夜色直播

Blog

Discover how we are pushing the boundaries in the world of quantum computing

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
corporate
All
May 16, 2025
Qubits in Qatar

I continue to be inspired by our team's pioneering efforts to redefine what鈥檚 possible through quantum computing. With more than 550 dedicated employees, we鈥檙e constantly pushing the boundaries to uncover meaningful applications for this transformative technology.

This week marked one of my proudest moments: the announcement of a joint venture with Al Rabban Capital to accelerate the commercial adoption of quantum technology in Qatar and the Gulf region. This partnership lays the groundwork for up to USD $1 billion in investment from Qatar over the next decade in 夜色直播鈥檚 state-of-the-art quantum technologies, co-development of quantum computing applications tailored to regional needs, and workforce development. This collaboration is a major step forward in our strategy to expand our commercial reach through long-term, strategic alliances that foster economic growth in both the U.S. and Qatar.

I had the unique opportunity to attend a business roundtable in Doha with President Trump, U.S. and Qatari policymakers, and other industry leaders. The conversation centered on the importance of U.S.-Qatari relations and the role of shared commercial interests in strengthening that bond.

A recurring theme was innovation in Artificial Intelligence (AI), reinforcing the role that hybrid quantum-classical systems will play in enhancing AI capabilities across sectors. By integrating quantum computing, AI, and high-performance computing, we can unlock powerful new use cases critical to economic growth and national security.聽

We also addressed the growing energy demands of AI-powered data centers. Quantum computing offers a potential path forward here, as well. Our H2-1 system has demonstrated an estimated 30,000x reduction in power consumption compared to classical supercomputers, making it a highly efficient tool for solving complex computational challenges.

What struck me most about the conversations in Qatar was the emphasis on cooperation over competition. While quantum is often framed as a race, our partnership with Al Rabban Capital underscores the value of cross-border collaboration. As I noted in a recent co-authored with Honeywell CEO Vimal Kapur, quantum computing isn鈥檛 just a technology鈥攊t鈥檚 a national capability. Countries that lead will shape how it is regulated, protected, and deployed. Our joint venture and this week鈥檚 dialogue reaffirm that both the U.S. and Qatar are taking the necessary first steps to lead in this space. Yet much work remains.

I believe we鈥檙e witnessing the emergence of a new kind of global alliance鈥攐ne rooted not just in trade, but in shared technological advancement. Quantum computing holds the promise to unlock innovative solutions that will tackle challenges that have long been beyond reach. Realizing that promise will require visionary leadership, global collaboration, and a bold commitment to shaping the future together.

I was honored to attend today鈥檚 roundtable during the President鈥檚 State Visit to Qatar and to see our announcement featured as part of that engagement. This milestone reflects a shared commitment by the U.S. and Qatar to strengthen strategic ties, spur bilateral investment in future-defining industries, and foster technological leadership and shared prosperity.聽

夜色直播鈥檚 expansion into the Gulf region, starting with Qatar, follows our successful growth in the U.S., U.K., Europe and Indo-Pacific. We will continue working across borders and sectors to accelerate the commercial adoption of quantum computing and realize quantum鈥檚 full potential鈥攆or the benefit of all!

Details of the JV are available in this link, along with the .

Onward and Upward,
Rajeeb Hazra

technical
All
May 12, 2025
夜色直播 Dominates the Quantum Landscape: New World-Record in Quantum Volume

Back in 2020, we to increase our Quantum Volume (QV), a measure of computational power, by 10x聽per year for 5 years.聽

Today, we鈥檙e pleased to share that we鈥檝e followed through on our commitment: Our System Model H2 has reached a Quantum Volume of 2虏鲁 = 8,388,608, proving not just that we always do what we say, but that our quantum computers are leading the world forward.聽

The QV benchmark was developed by IBM to represent a machine鈥檚 performance, accounting for things like qubit count, coherence times, qubit connectivity, and error rates. :听

鈥渢he higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research."

Our announcement today is precisely what sets us apart from the competition. No one else has been bold enough to make a similar promise on such a challenging metric 鈥 and no one else has ever completed a five-year goal like this.

We chose QV because we believe it鈥檚 a great metric. For starters, it鈥檚 not gameable, like other metrics in the ecosystem. Also, it brings together all the relevant metrics in the NISQ era for moving towards fault tolerance, such as gate fidelity and connectivity.聽

Our path to achieve a QV of over 8 million was led in part by Dr. Charlie Baldwin, who studied under the legendary Ivan H. Deutsch. Dr. Baldwin has made his name as a globally renowned expert in quantum hardware performance over the past decade, and it is because of his leadership that we don鈥檛 just claim to be the best, but that we can prove we are the best.聽

Figure 1: All known published Quantum Volume measurements.
Sources: [][][][][]

Alongside the world鈥檚 biggest quantum volume, we have the industry鈥檚 . To that point, the table below breaks down the leading commercial specs for each quantum computing architecture.聽

Table 1: Leading commercial spec for each listed architecture or demonstrated capabilities on commercial hardware.

We鈥檝e never shied away from benchmarking our machines, because we know the results will be impressive. It is our provably world-leading performance that has enabled us to demonstrate:

As we look ahead to our next generation system, Helios, 夜色直播鈥檚 Senior Director of Engineering, Dr. Brian Neyenhuis, reflects: 鈥淲e finished our five-year commitment to Quantum Volume ahead of schedule, showing that we can do more than just maintain performance while increasing system size. We can improve performance while scaling.鈥澛

Helios鈥 performance will exceed that of our previous machines, meaning that 夜色直播 will continue to lead in performance while following through on our promises.聽

As the undisputed industry leader, we鈥檙e racing against no one other than ourselves to deliver higher performance and to better serve our customers.

technical
All
May 1, 2025
GenQAI: A New Era at the Quantum-AI Frontier

At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).

GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.

Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.

The Search for Ground State Energy

One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.

The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.

That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.

Here's how it works:

  • We start with a batch of trial quantum circuits, which are run on our QPU.
  • Each circuit prepares a quantum state, and we measure the energy of that state with respect to the Hamiltonian for each one.
  • Those measurements are then fed back into a transformer model (the same architecture behind models like GPT-2) to improve its outputs.
  • The transformer generates a new distribution of circuits, biased toward ones that are more likely to find lower energy states.
  • We sample a new batch from the distribution, run them on the QPU, and repeat.
  • The system learns over time, narrowing in on the true ground state.

To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.

To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.

The Future of Quantum Chemistry

The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.

By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.

This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.

partnership
All
technical
All
April 11, 2025
夜色直播鈥檚 partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 夜色直播 Systems. 聽

Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 夜色直播 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽

technical
All
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against 鈥渟tore now, decrypt-later鈥 (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST鈥檚 SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market. 聽

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

夜色直播 delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All
March 28, 2025
Being Useful Now 鈥 Quantum Computers and Scientific Discovery

The most common question in the public discourse around quantum computers has been, 鈥淲hen will they be useful?鈥 We have an answer.

Very recently in Nature we a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance 鈥 one that could only be achieved because we have the world鈥檚 most powerful quantum computer.

Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.

Understanding magnetism

Our latest shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.

To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used 夜色直播鈥檚 System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.

As the authors of the paper state:

鈥淲e believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.鈥

Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them 鈥榮pins鈥) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently 鈥渜uantum鈥 because the spins can move between up and down configurations by a process known as 鈥渜uantum tunneling鈥. 聽

Gaining material insights

Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, 鈥.鈥 When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent 鈥榪uantumness鈥 of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.

These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity. 聽

Instead of tailored demonstrations that claim 鈥榪uantum advantage鈥 in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.

With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.