The biggest, or maybe the most notable, is that we expanded the number of fully connected qubits from 12 to 20. That is a significant increase and the most qubits we鈥檝e added to an existing machine. Last year, we added two fully connected qubits to the 10 qubits H1-1 already had. It was a major accomplishment at the time. Now, that seems easy compared to this upgrade because for us, it is not as simple as adding qubits.
To add eight more qubits and maintain all-to-all connectivity, we upgraded the optics that deliver the light used to control our qubits. Previously, we were only delivering the light needed to complete quantum gates to three different regions of the trap, which we call gate zones. Now we can address all five zones in our trap simultaneously. This enables us to complete more single-qubit or two-qubit gates in parallel, which means users can run complex algorithms without experiencing a slowdown.
This one was significantly more involved than previous upgrades. Although we didn鈥檛 modify the trap at the heart of the computer or the vacuum chamber and cryostat that enclose it, we redesigned the entire optical delivery system. This was necessary so as not to deliver light to more regions of the trap, but also to improve stability.
Increasing the size and complexity of the machine without improving the stability would be a recipe for disaster. Because we were able to improve the stability, we were able to add more qubits without sacrificing performance or key features our users expect such as all-to-all connectivity, high single and two-qubit gate fidelities, and mid-circuit measurement.
The gate zones are where all the interesting quantum stuff happens. More zones allow us to run more quantum operations in parallel, allowing for faster, more complex algorithms.
Having more gate zones allows us to use more qubits in an efficient way.
Because we can do all these operations in five different locations in parallel, it finally makes sense to put more qubits into the trap. We could have loaded more qubits into earlier versions of the system, but without additional gate zones, it doesn鈥檛 make a lot of sense. In fact, doing that would create a bottleneck with qubits waiting for their turn to do a two-qubit gate, which then slows down an algorithm. Now, we can do five quantum gates in parallel, which allows us to run more complex algorithms without sacrificing speed.
Twenty qubits are probably where this generation of traps ends. There is a possibility to add a handful more, but it feels like this is probably the most efficient number for these H1 Systems due to layout of the trap. But future generations, some of which are already trapping ions in the lab today, will use even more qubits and with the same or better efficiency.
In the QCCD architecture, trapped ions are easy to move around. By applying the right set of voltages to the trap 鈥 a small, electrode-filled device that holds qubits in place 鈥 we can arbitrarily rearrange the chain of qubits so any qubit can pair with any other and perform a quantum gate. So, you can think of any algorithm as a set of steps where we shuffle all the qubits to pair them up for the next set of gates, move them into the gate zones, and then shuffle them again to set them up for the next set of gates. The ions 鈥渄ance鈥 across the trap moving from partner to partner to execute a quantum circuit.
Some circuits, like quantum volume circuits, are densely packed, meaning that every possible pair wants to do a gate at each step of the circuit. Other circuits are very loosely packed, meaning you can only do a few gates in parallel before moving on to the next slice because you need to reuse one of those qubits with a different partner.
Although this dance may sound complicated, it makes it very easy to program our quantum computer. A user sends us a time-ordered set of gates without having to think about the layout of the qubits, and our compiler figures out how to pair up the appropriate qubits to make it happen. You don't have to worry about which ones are next to each other because any pair of qubits is equal to all the others. And, at any step, we can completely rearrange this chain and put any two qubits next to each other.
It鈥檚 like a square dance where someone calls out directions to the dancers.
We will continue to work with our customers to improve our system performance and their overall experience. One of the reasons we have a commercial system now is to allow our customers to program their algorithms on a real machine. They're dealing with all the constraints of real quantum hardware. They're pushing on their algorithms while we're pushing on the hardware, to get the fastest iterations.
As they learn new things about their algorithm, we learn what the most important things are to improve. And we work on those. We are learning a lot from our customers, and they are learning a lot by running on our hardware.
夜色直播,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.聽
Back in 2020, we to increase our Quantum Volume (QV), a measure of computational power, by 10x聽per year for 5 years.聽
Today, we鈥檙e pleased to share that we鈥檝e followed through on our commitment: Our System Model H2 has reached a Quantum Volume of 2虏鲁 = 8,388,608, proving not just that we always do what we say, but that our quantum computers are leading the world forward.聽
The QV benchmark was developed by IBM to represent a machine鈥檚 performance, accounting for things like qubit count, coherence times, qubit connectivity, and error rates. :听
鈥渢he higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research."
Our announcement today is precisely what sets us apart from the competition. No one else has been bold enough to make a similar promise on such a challenging metric 鈥 and no one else has ever completed a five-year goal like this.
We chose QV because we believe it鈥檚 a great metric. For starters, it鈥檚 not gameable, like other metrics in the ecosystem. Also, it brings together all the relevant metrics in the NISQ era for moving towards fault tolerance, such as gate fidelity and connectivity.聽
Our path to achieve a QV of over 8 million was led in part by Dr. Charlie Baldwin, who studied under the legendary Ivan H. Deutsch. Dr. Baldwin has made his name as a globally renowned expert in quantum hardware performance over the past decade, and it is because of his leadership that we don鈥檛 just claim to be the best, but that we can prove we are the best.聽
鈥
Alongside the world鈥檚 biggest quantum volume, we have the industry鈥檚 . To that point, the table below breaks down the leading commercial specs for each quantum computing architecture.聽
We鈥檝e never shied away from benchmarking our machines, because we know the results will be impressive. It is our provably world-leading performance that has enabled us to demonstrate:
As we look ahead to our next generation system, Helios, 夜色直播鈥檚 Senior Director of Engineering, Dr. Brian Neyenhuis, reflects: 鈥淲e finished our five-year commitment to Quantum Volume ahead of schedule, showing that we can do more than just maintain performance while increasing system size. We can improve performance while scaling.鈥澛
Helios鈥 performance will exceed that of our previous machines, meaning that 夜色直播 will continue to lead in performance while following through on our promises.聽
As the undisputed industry leader, we鈥檙e racing against no one other than ourselves to deliver higher performance and to better serve our customers.
At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 夜色直播 Systems. 聽
Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 夜色直播 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽