鈥Mark Jackson is a man on a mission. As 夜色直播鈥檚 senior quantum evangelist, Mark鈥檚 job is to create awareness and understanding about quantum computing and its world-changing potential. Based in New York, Mark holds a Ph.D. in theoretical physics from Columbia University with a background in mathematical modeling and computational physics. In 2017 he joined Cambridge Quantum, which combined with Honeywell Quantum Solutions to form 夜色直播 in 2021. He has an academic background and remains an adjunct faculty member at Singularity University. He sat down earlier this month to talk about his unique job and the future of quantum computing.聽
A lot of my job is speaking at conferences, doing interviews, participating in podcasts, and posting on social media. I focus on creating awareness and excitement for quantum computing, letting people know what we do at 夜色直播, and educating them about the ways this amazing technology will help solve complex problems and improve people鈥檚 lives.聽
Most people just don鈥檛 know much about quantum computing, or they have misunderstandings or reservations about the technology and its potential impact on society.聽
Half the people don鈥檛 believe quantum computers really exist yet. They think it鈥檚 some sort of science fiction idea that we鈥檝e cooked up and, if it happens at all, it鈥檒l be 20 years from now. They just can鈥檛 believe we have these computers today. The other half think quantum computers are just really fast computers. They believe we can take all our existing software and run it on a quantum computer, and it will be a million times faster. Neither is true, and it鈥檚 my job to educate people about what quantum computers can actually do to make the world better.聽
Over the past few years my role at 夜色直播 has evolved a bit, and about a year ago they changed my title to 鈥渆vangelist.鈥 Technically, I鈥檓 now the 鈥渟enior evangelist鈥 because we recently added several other people to the team, which will help us do an even better job of spreading the word.聽
We anticipate we鈥檙e only 3鈥5 years away from being able to do things on a quantum computer that are truly valuable to society. That time will pass very quickly, which is why we鈥檙e encouraging companies to work with us right now to develop projects so that in a few years, when technology catches up, they鈥檒l be in a good position to take advantage of opportunities.聽
The two nearest-term commercial applications for quantum computers are in chemistry and optimization, such as supply chain and logistics.聽
In chemistry, we have known the equations for 100 years. If you give me a molecule, I know exactly what the molecule is made of 鈥 I know how many electrons, protons and neutrons are in it, and I know the equations governing all their interactions. But, solving those equations and actually figuring out the behavior of the molecule is very difficult because, as a molecule gets bigger, there are so many interactions that tracking them quickly overwhelms a conventional computer. Quantum computers are expected to one day solve these chemical equations easier and faster.聽
For example, pharmaceutical companies could use this technology to design medicine. Right now, there is a lot of guesswork in developing a drug. Scientists can do a little preliminary work on a computer, but then they must synthesize a lot of trial drugs followed by testing on humans.聽
Developing drugs this way is expensive, time consuming, and risky. In general, it takes about 10 years and $1 billion dollars to bring a drug to market. It would be ideal if scientists could do more work on a computer up front, which will save time and money and be less risky for patients.聽
Additionally, quantum computing will be invaluable for the machine-learning industry. Artificial intelligence is used everywhere. Your Netflix recommendations use AI machine-learning, and while this may not be lifechanging, advanced autopilot technology on an airplane or in a driverless car will be. Quantum computers one day could have the power, speed, and capacity to take machine-learning to a whole new level.聽
I started hearing about quantum computing in 2017 and thought it sounded amazing. This field of study didn鈥檛 even exist when I was a student.聽
My background is in theoretical physics. For 15 years I worked in string theory and cosmology. Several years ago, I decided to leave academia and pursue other interests. I was very fortunate to be introduced to Ilyas Khan, founder of Cambridge Quantum and now CEO of 夜色直播, and he asked me to join the team about five years ago.
I was the first American hire at Cambridge Quantum, which was then a small start-up company with only about 30 people. The organization was comprised of all scientists until I joined. I was the first person to be hired whose main objective was business development.聽
We can have the most amazing technology in the world, but if no one knows about it, then it doesn鈥檛 do anyone much good. There is a lot of misunderstanding and unfamiliarity that surrounds this industry currently, which is why my job of creating awareness is so important.聽
I get to talk to university students and researchers and let them know we have software they can use for free to help them code better. I am very lucky to have an academic background in physics because when I speak at these universities, the professors sometimes let me take over the class for a day. I don鈥檛 think they would grant the same access to a salesperson. I love to talk about the cool things we have done and are doing with these students and share ways we can partner and collaborate both now and in the future.
We want to build our hiring pipeline with the smartest and most creative young minds available. Hiring is a top priority, and job candidates may not know there are such amazing job opportunities at 夜色直播 and throughout this exciting industry.聽聽
When I started, there were 8鈥10 credible quantum computing startups, including us. We were all pretty small with just a few dozen employees at the time.聽
Now, it seems like there鈥檚 a new company forming, a new investment, or a technical breakthrough in hardware or software every week. There are quantum information sciences degrees and programs in college now including quantum computing and closely related sciences. It鈥檚 dizzying to keep up with everything.聽
Today, there are roughly 400 quantum companies, building quantum products all over the world. Companies are also increasing in size. Our company currently has 400 employees, but we鈥檙e hiring like crazy and anticipate adding 200 people in 2022.聽
The U.S. government also is investing. During the last administration, they had a Quantum Initiative Act (QIA) where $1.2 billion was allocated for quantum funding. Other countries also are investing. China, for example, has spent at least $30 billion in quantum technology over the last few years.
夜色直播,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.聽
Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, to McKinsey & Company, underscoring how today鈥檚 quantum computers are already delivering customer value in their current phase of development.
This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address. 聽
Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction鈥攁 capability that, until now, has eluded the industry. 聽
夜色直播 is the first鈥攁nd only鈥攃ompany to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.
In this regard, 夜色直播 is the first company to step from the so-called 鈥淣ISQ鈥 (noisy intermediate-scale quantum) era towards utility-scale quantum computers.
A quantum computer uses operations called gates to process information in ways that even today鈥檚 fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:
A system that can run both gates is classified as and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement 鈥榥on-Clifford鈥 gates is not really a quantum computer.
A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. 夜色直播 has the best and brightest scientists dedicated to keeping our systems鈥 error rates the lowest in the world.
For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing 鈥渁 full gate set鈥 with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and 鈥攖oo high for any practical use.
Today, we have published that establishes 夜色直播 as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.
The describes how scientists at 夜色直播 used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any .
Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.
Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.
In the , co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called 鈥渃ode switching鈥.
Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we鈥檝e previously demonstrated full error correction and the other ingredients for universality.
In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than with error correction. Notably, this process only cost 28 qubits . This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.
Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.
With all of the required pieces now, finally, in place, we are 鈥榝ully鈥 equipped to become the first company to perform universal fully fault-tolerant computing鈥攋ust in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.
If we are to create 鈥榥ext-gen鈥 AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that 夜色直播 continues to lead by demonstrating concrete progress 鈥 advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday鈥檚 tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models鈥攄esigned for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we鈥檙e thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap 鈥 but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge. 聽
Achieving that future requires models that are efficient, scalable, and actually run on today鈥檚 quantum hardware.
That鈥檚 what we鈥檝e built.
Until Quixer, quantum transformers were the result of a brute force 鈥渃opy-paste鈥 approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it鈥檚 not a translation 鈥 it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We鈥檝e already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we鈥檒l explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn鈥檛 just about one model. It鈥檚 a signal that the quantum AI era has begun, and that 夜色直播 is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today鈥檚 high-performance computing (HPC) and AI environments. At ISC 2025, meet the 夜色直播 team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
夜色直播 is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10鈥13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what鈥檚 possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration鈥攆rom near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!