The 夜色直播 team is looking forward to participating in this year鈥檚 conference from March 10th 鈥 13th in Singapore. Meet our team at Booth B2 to discover how 夜色直播 is bridging the gap between quantum computing and high-performance compute with leading industry partners.
Our team will be participating in workshops and presenting at the keynote and plenary sessions to showcase our quantum computing technologies. Join us at the below sessions:
Workshop: Accelerating Quantum Supercomputing: CUDA-Q Tutorial across Multiple Quantum Platforms
Location:聽Room P10 鈥 Peony Jr 4512 (Level 4)
This workshop will explore the seamless integration of classical and quantum resources for quantum-accelerated supercomputing. Join Kentaro Yamamoto and Enrico Rinaldi, Lead R&D聽Scientists at 夜色直播, for an Introduction to our 聽integrated full-stack for quantum computing, Quantum Phase Estimation (QPE) for solving quantum chemistry problems, and a demonstration of a QPE algorithm with CUDA-Q on 夜色直播 Systems. If you're interested in access to our quantum computers and emulator for use on the CUDA-Q platform, register here.
Keynote: Quantum Computing: A Transformative Force for Singapore's Regional Economy
Location:聽Melati Ballroom (Level 4)
Quantum Computing is no longer a distant promise; it has arrived and is poised to revolutionize several economies. Join our President and CEO, Dr. Rajeeb Hazra, to discover how 夜色直播鈥檚 approach to Quantum Generative AI is driving breakthroughs in applications which hold significant relevance for Singapore, in fields like chemistry, computational biology, and finance. Additionally, Raj will discuss the challenges and opportunities of adopting quantum solutions from both technical and business perspectives, emphasizing the importance of collaboration to build quantum applications that integrate the best of quantum and AI.
Industry Breakout Track: Transformative value of Quantum and AI: bringing meaningful insights for critical applications today
Location:聽Room L1 鈥 Lotus Jr (Level 4)
The ability to solve classically intractable problems defines the transformative value of quantum computing, offering new tools to redefine industries and address complex humanity challenges. In this session with Dr. Elvira Shishenina, Senior Director of Strategic Initiatives, discover how 夜色直播鈥檚 hardware is leading the way in achieving early fault-tolerance, marking a significant step forward in computational capabilities. By integrating quantum technology with AI and high-performance computing, we are building systems designed to address real-world issues with efficiency, precision and scale. This approach empowers critical applications from hydrogen fuel cells and carbon capture to precision medicine, food security, and cybersecurity, providing meaningful insights at a commercial level today.
Hybrid Quantum Classical Computing Track: Quantifying Quantum Advantage with an End-to-End Quantum Algorithm for the Jones Polynomial
Location: Room O3 鈥 Orchid Jr 4211-2 (Level 4)
Join Konstantinos Meichanetzidis, Head of Scientific Product Development, for this presentation on an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer. Specifically, they estimate the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. In their research, they demonstrate our quantum algorithm on 夜色直播鈥檚 H2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, they construct an efficiently verifiable benchmark to characterize the effect of noise present in a given quantum processor. In parallel, they implement and benchmark the state-of-the-art tensor-network-based classical algorithms.The practical tools provided in the work presented will allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Industry Plenary: Quantum Heuristics: From Worst Case to Practice
Location: Melati Ballroom (Level 4)
Which problems allow for a quantum speedup, and which do not? This question lies at the heart of quantum information processing. Providing a definitive answer is challenging, as it connects deeply to unresolved questions in complexity theory. To make progress, complexity theory relies on conjectures such as P鈮燦P and the Strong Exponential Time Hypothesis, which suggest that for many computational problems, we have discovered algorithms that are asymptotically close to optimal in the worst case. In this talk, Professor Harry Buhrman, Chief Scientist for Algorithms and Innovation, will explore the landscape from both theoretical and practical perspectives. On the theoretical side, I will introduce the concept of 鈥渜ueasy instances鈥濃攑roblem instances that are quantum-easy but classically hard (classically queasy). On the practical side, I will discuss how these insights connect to advancements in quantum hardware development and co-design.
*All times in Singapore Standard Time
夜色直播,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.聽
At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 夜色直播 Systems. 聽
Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 夜色直播 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market. 聽
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
夜色直播 delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.