Particle accelerator projects like the Large Hadron Collider (LHC) don’t just smash particles - they also power the invention of some of the world’s most impactful technologies. A favorite example is the world wide web, which was developed for particle physics experiments at CERN.
Tech designed to unlock the mysteries of the universe has brutally exacting requirements – and it is this boundary pushing, plus billion-dollar budgets, that has led to so much innovation.
For example, X-rays are used in accelerators to measure the chemical composition of the accelerator products and to monitor radiation. The understanding developed to create those technologies was then applied to help us build better CT scanners, reducing the x-ray dosage while improving the image quality.
Stories like this are common in accelerator physics, or High Energy Physics (HEP). Scientists and engineers working in HEP have been early adopters and/or key drivers of innovations in advanced cancer treatments (using proton beams), machine learning techniques, robots, new materials, cryogenics, data handling and analysis, and more.
A key strand of HEP research aims to make accelerators simpler and cheaper. A key piece of infrastructure that could be improved is their computing environments.
: “CERN is one of the most highly demanding computing environments in the research world... From software development, to data processing and storage, networks, support for the LHC and non-LHC experimental programme, automation and controls, as well as services for the accelerator complex and for the whole laboratory and its users, computing is at the heart of CERN’s infrastructure.”
, it’s no surprise that the HEP community is interested in quantum computing, which offers real solutions to some of their hardest problems.
As the authors of stated: “[Quantum Computing] encompasses several defining characteristics that are of particular interest to experimental HEP: the potential for quantum speed-up in processing time, sensitivity to sources of correlations in data, and increased expressivity of quantum systems... Experiments running on high-luminosity accelerators need faster algorithms; identification and reconstruction algorithms need to capture correlations in signals; simulation and inference tools need to express and calculate functions that are classically intractable.”
The HEP community’s interest in quantum computing is growing. In recent years, their scientists have been looking carefully at how quantum computing could help them, publishing a number of papers discussing the challenges and requirements for quantum technology to make a dent ( and here’s the Dz).
In the past few months, what was previously theoretical is becoming a reality. Several groups published results using quantum machines to tackle something called “Lattice Gauge Theory”, which is a type of math used to describe a broad range of phenomena in HEP (and beyond). Two papers came from academic groups using quantum simulators, one using and one using . Another group, including scientists from Google, tackled Lattice Gauge Theory using a Taken together, these papers indicate a growing interest in using quantum computing for High Energy Physics, beyond simple one-dimensional systems which are more easily accessible with classical methods such as tensor networks.
We have been working with DESY, one of the world’s leading accelerator centers, to help make quantum computing useful for their work. DESY, short for Deutsches Elektronen-Synchrotron, is a national research center that operates, develops, and constructs particle accelerators, and is part of the worldwide computer network used to store and analyze the enormous flood of data that is produced by the LHC in Geneva.
Our first publication from this partnership describes a quantum machine learning technique for untangling data from the LHC, finding that in some cases the quantum approach was indeed superior to the classical approach. as it’s a favorite contender for quantum advantage in HEP.
Lattice Gauge Theories are one approach to solving what are more broadly referred to as “quantum many-body problems”. Quantum many-body problems lie at the border of our knowledge in many different fields, such as the electronic structure problem which impacts chemistry and pharmaceuticals, or the quest for understanding and engineering new material properties such as light harvesting materials; to basic research such as high energy physics, which aims to understand the fundamental constituents of the universe, or condensed matter physics where our understanding of things like high-temperature superconductivity is still incomplete.
The difficulty in solving problems like this – analytically or computationally – is that the problem complexity grows exponentially with the size of the system. For example, there are 36 possible configurations of two six-faced dice (1 and 1 or 1 and 2 or 1and 3... etc), while for ten dice there are more than sixty million configurations.
Quantum computing may be very well-suited to tackling problems like this, due to a quantum processor’s similar information density scaling – with the addition of a single qubit to a QPU, the information the system contains doubles. Our 56-qubit System Model H2, for example, can hold quantum states that require 128*(2^56) bits worth of information to describe (with double-precision numbers) on a classical supercomputer, which is more information than the biggest supercomputer in the world can hold in memory.
The joint team made significant progress in approaching the Lattice Gauge Theory corresponding to Quantum Electrodynamics, the theory of light and matter. For the first time, they were able study the full wavefunction of a two-dimensional confining system with gauge fields and dynamical matter fields on a quantum processor. They were also able to visualize the confining string and the string-breaking phenomenon at the level of the wavefunction, across a range of interaction strengths.
The team approached the problem starting with the definition of the Hamiltonian using the InQuanto software package, and utilized the reusable protocols of InQuanto to compute both projective measurements and expectation values. InQuanto allowed the easy integration of measurement reduction techniques and scalable error mitigation techniques. Moreover, the emulator and hardware experiments were orchestrated by the Nexus online platform.
In one section of the study, a circuit with 24 qubits and more than 250 two-qubit gates was reduced to a smaller width of 15 qubits thanks our unique qubit re-use and mid-circuit measurement automatic compilation implemented in TKET.
This work paves the way towards using quantum computers to study lattice gauge theories in higher dimensions, with the goal of one day simulating the full three-dimensional Quantum Chromodynamics theory underlying the nuclear sector of the Standard Model of particle physics. Being able to simulate full 3D quantum chromodynamics will undoubtedly unlock many of Nature’s mysteries, from the Big Bang to the interior of neutron stars, and is likely to lead to applications we haven’t yet dreamed of.
ҹɫֱ, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. ҹɫֱ’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, ҹɫֱ leads the quantum computing revolution across continents.
Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, to McKinsey & Company, underscoring how today’s quantum computers are already delivering customer value in their current phase of development.
This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address.
Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction—a capability that, until now, has eluded the industry.
ҹɫֱ is the first—and only—company to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.
In this regard, ҹɫֱ is the first company to step from the so-called “NISQ” (noisy intermediate-scale quantum) era towards utility-scale quantum computers.
A quantum computer uses operations called gates to process information in ways that even today’s fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:
A system that can run both gates is classified as and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement ‘non-Clifford’ gates is not really a quantum computer.
A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. ҹɫֱ has the best and brightest scientists dedicated to keeping our systems’ error rates the lowest in the world.
For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing “a full gate set” with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and —too high for any practical use.
Today, we have published that establishes ҹɫֱ as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.
The describes how scientists at ҹɫֱ used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any .
Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.
Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.
In the , co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called “code switching”.
Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we’ve previously demonstrated full error correction and the other ingredients for universality.
In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than with error correction. Notably, this process only cost 28 qubits . This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.
Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.
With all of the required pieces now, finally, in place, we are ‘fully’ equipped to become the first company to perform universal fully fault-tolerant computing—just in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that ҹɫֱ continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that ҹɫֱ is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the ҹɫֱ team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
ҹɫֱ is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!