ҹɫֱ

ҹɫֱ extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume

ҹɫֱ has raised the bar for the global ecosystem by achieving the historic and much-vaunted “three 9's” 2-qubit gate fidelity in its commercial quantum computer and announcing that its Quantum Volume has surpassed one million – exponentially higher than its nearest competitors.

April 16, 2024

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management

All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9's” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.

That day has now arrived. Building on several previous laboratory demonstrations , ҹɫֱ has become the first company ever to achieve “three 9's” in a commercially-available quantum computer, with the first demonstration of 99.914(3)% 2-qubit gate fidelity, showing repeatable performance across all qubit pairs on our H1-1 system that is constantly available to customers. This production-environment announcement is a marked difference to one-offs recorded in carefully contrived laboratory conditions. This demonstrates what will fast become the expected standard for the entire quantum computing sector.

ҹɫֱ is also announcing another milestone, a seven-figure Quantum Volume (QV) of 1,048,576 – or in terms preferred by the experts, 220 – reinforcing our commitment to building, by a significant margin, the highest-performing quantum computers in the world.

These announcements follow a historic month that started when we proved our ability to scale our systems to the sizes needed to solve some of the world’s most pressing problems – and in a way that offers the best path to universal quantum computing. 

On March 5th, 2024, ҹɫֱ researchers disclosed details of our experiments that provide a solution to a totemic problem faced by all quantum computing architectures, known as the wiring problem. Supported by a video showing qubits being shuffled through a 2-dimensional grid ion-trap, our team presented concrete proof of the scalability of the quantum charge-coupled device (QCCD) architecture used in our H-Series quantum computers.

Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

On April 3rd, 2024 in partnership with Microsoft, our teams announced a breakthrough in quantum error correction that delivered as its crowning achievement the most reliable logical qubits on record.

We revealed detailed demonstrations in an of the reliability achieved via 4 logical qubits encoded into just 30 physical qubits on our System Model H2 quantum computer. Our joint teams were able to demonstrate logical circuit error rates far below physical circuit error rates, a capability that our full-stack quantum computer is currently the only one in the world with the fidelity required to achieve.

Explaining the importance of 2-qubit gate fidelity

Reaching this level of physical fidelity is not optional for commercial scale computers – it is essential for error correction to work, and that in turn is a necessary foundation for any useful quantum computer. Our record two-qubit gate fidelity of 99.914(3)% marks a symbolic inflection point for the industry: at ”three 9's” fidelity, we are nearing or surpassing the break-even point (where logical qubits outperform physical qubits) for many quantum error correction protocols, and this will generate great interest among research and industrial teams exploring fault-tolerant methods for tackling real-world problems.

Without hardware fidelity this good, error-corrected calculations are noisier than un-corrected computations. This is why we call it a “threshold” – when gate errors are “above threshold”, quantum computers will remain noisy no matter what you do. Below threshold, you can use quantum error correction to push error rates way, way down, so that quantum computers eventually become as reliable as classical computers. 

Four years ago, ҹɫֱ claimed that it would improve the performance of its H-Series quantum computers by 10x each year for five years, when measured by the industry’s most widely recognized benchmark, QV (an industry standard not to be confused with less comprehensive metrics such as Algorithmic Qubits).

Today’s achievement of a 220 QV – which as with all our demonstrations was achieved on our commercially-available machine – shows that our team is living up to this audacious commitment. We are completely confident we can continue to overcome the technical problems that stand in the way of even better fidelity and QV performance. Our QV data is , as are

The combination of high QV and gate fidelities puts the ҹɫֱ system in a class by-itself – it is far and away the best of any commercially-available quantum computer.

A diagram of a circuitDescription automatically generated
Figure 1: Quantum Volume (QV) heavy output probability (HOP) as a function of time-ordered circuit index. The solid blue line shows the cumulative average while the green region shows the two-sigma confidence interval based on bootstrap resampling. A QV test is passed when the lower two-sigma confidence interval crosses 2/3.
A graph with numbers and a lineDescription automatically generated
Figure 2. Quantum volume vs time for our commercial systems. ҹɫֱ’s new world record quantum volume of 1,048,576 maintains our self-imposed goal of a 10-fold increase each year. In fact, in 2023 we achieved an overall increase in quantum volume of >100x.
A graph with a line and numbersDescription automatically generated with medium confidence
Figure 3. Two-qubit randomized benchmarking data from H1-1 across the five gate zones (dashed lines) and average over all five gate zones (solid blue line). The survival probability decays as a function of sequence length, which can be related to the average fidelity of the two-qubit gates with standard randomized benchmarking theory. With this data, we can claim that not only are all zones consistent with 99.9, but all zones are >99.9 outside of error bars.
QCCD: the path to fault tolerance

Additionally, and notably, these benchmarks were achieved “inherently”, without error mitigation, thanks to the H Series’ all-to-all connectivity and QCCD architecture. Full connectivity results in less errors when running large, complicated circuits. While other modalities depend on error mitigation techniques, such techniques are not scalable and present only a modest near-term value.

Lower physical error and high connectivity means our quantum computers have a provably lower overhead for error-corrected computation.

Looking more deeply, experts look for high fidelities that are valid in all operating zones and between any pair of qubits. In contrast to our competitors, this is precisely what our H Series delivers. We do not suffer from a broad distribution of gate fidelities between different pairs of qubits, meaning that some pairs of qubits have significantly lower fidelities. ҹɫֱ is the only quantum computing company with all qubit pairs boasting above 99.9% fidelity.

Alongside these benefits and demonstrations of scalability, fidelity, connectivity, and reliability, it is worth noting how these features impact what arguably matters the most to users – time to solution. In the QCCD architecture, speed of operations is decoupled from speed to reach a computational solution thanks to a combination of:

  • a better signal to noise ratio than other modalities
  • drastically reducing or eliminating the number of swap gates required (because we can move our ions through space), and
  • reducing the number of trials required for an accurate result.

The net effect is that for increasingly complex circuits it takes a high-fidelity QCCD-type quantum computer less time to achieve accurate results than other 2D connected or lower-fidelity architectures.

“Getting to three 9’s in the QCCD architecture means that ~1000 entangling operations can be done before an error occurs. Our quantum computers are right at the edge of being able to do computations at the physical level that are beyond the reach of classical computers, which would occur somewhere between 3 nines and 4 nines. Some tasks become hard for classical computers before this regime (e.g. Google’s random circuit sampling problem) but this new regime allows for much less contrived problems to be solved. At that point, these machines become real tools for new discoveries – albeit they will still be limited in what they can probe, likely to be physics simulations or closely related problems,” said Dave Hayes, a Senior R&D manager at ҹɫֱ.

“Additionally, these fidelities put us, some would say comfortably, within the regime needed to build fault-tolerant machines. These fidelities allow us to start adding more qubits without needing to improve performance further, and to take advantage of quantum error correction to improve the computational power necessary for tackling truly large problems. This scaling problem gets easier with even better fidelities (which is why we’re not satisfied with 3 nines) but it is possible in principle.”

ҹɫֱ’s new records in fidelity and quantum volume on our commercial H1 device are expected to be achieved on the H2, once upgrades are implemented, underscoring the value that we offer to users for whom stability, reliability and robust performance are pre-requisites. The quantum computing landscape is complex and changing, but we remain at the head of the pack in all key metrics. The relationship with our world-class applications teams means that co-designed devices for solving some of the world’s most intractable problems are a big step closer to reality.

ҹɫֱ is the world’s leading quantum computing company, and our world-class scientists and engineers are continually driving our technology forward while expanding the possibilities for our users. Their work on applications includes cybersecurity, quantum chemistry, quantum Monte Carlo integration, quantum topological data analysis, condensed matter physics, high energy physics, quantum machine learning, and natural language processing – and we are privileged to support them to bring new solutions to bear on some of the greatest challenges we face.

About ҹɫֱ

ҹɫֱ, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. ҹɫֱ’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, ҹɫֱ leads the quantum computing revolution across continents.

Blog
May 1, 2025
GenQAI: A New Era at the Quantum-AI Frontier

At the heart of quantum computing’s promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).

GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.

Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we’re not just feeding an AI more text from the internet; we’re giving it new and valuable data that can’t be obtained anywhere else.

The Search for Ground State Energy

One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule’s ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.

The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force—testing every possible state and measuring its energy—because  the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.

That’s where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.

Here's how it works:

  • We start with a batch of trial quantum circuits, which are run on our QPU.
  • Each circuit prepares a quantum state, and we measure the energy of that state with respect to the Hamiltonian for each one.
  • Those measurements are then fed back into a transformer model (the same architecture behind models like GPT-2) to improve its outputs.
  • The transformer generates a new distribution of circuits, biased toward ones that are more likely to find lower energy states.
  • We sample a new batch from the distribution, run them on the QPU, and repeat.
  • The system learns over time, narrowing in on the true ground state.

To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H₂). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.

To our knowledge, we’re the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.

The Future of Quantum Chemistry

The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems—from to materials discovery, and potentially, even drug design.

By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.

This is just the beginning. We’re already looking at applying GQE to more complex molecules—ones that can’t currently be solved with existing methods, and we’re exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.

technical
All
Blog
April 11, 2025
ҹɫֱ’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and ҹɫֱ Systems.  

Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and ҹɫֱ joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.  

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes.  Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here.  

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.  

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

ҹɫֱ delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All