夜色直播 researchers have set a record for the number of times they were able to place qubits into a quantum state and then measure the results, beating the previously stated best in class many times over.
The team led by Alex An, Tony Ransford, Andrew Schaffer, Lucas Sletten, John Gaebler, James Hostetter, and Grahame Vittorini achieved a state preparation and measurement, or SPAM, fidelity of 99.9904 percent 鈥 the highest of any quantum technology to date 鈥 using qubits formed from non-radioactive barium-137. The results, which are detailed here, have been submitted to arXiv.
This work has major implications for the quantum industry and trapped-ion technologies.听
Improving SPAM fidelity helps reduce errors that accumulate in today鈥檚 鈥渘oisy鈥 quantum machines, which is critical for moving to 鈥渇ault-tolerant鈥 systems that prevent errors from cascading through a system and corrupting circuits.
In addition, being able to form qubits from barium-137 and place them into a quantum state with high fidelity is advantageous for scaling trapped-ion hardware systems.听 Researchers can use lasers in the visible spectrum, a more mature and readily available technology, to initialize and manipulate qubits.听
鈥淭his is a major step forward for the 夜色直播 team and our high-performing trapped-ion quantum hardware,鈥 said Tony Uttley, 夜色直播 president and chief operating officer.听 鈥淭he advancement of the quantum computing industry as a whole is going to come from lots of individual technological achievements like this one, paving the way for future fault-tolerant systems.鈥
For most people, the word 鈥渟pam鈥 conjures images of unwanted emails flooding an inbox or of chopped pork in a can.听
In quantum computing, SPAM stands for identified by theoretical physicist David DiVincenzo as necessary for the operation of quantum computer. It refers to initializing qubits (placing them in a quantum state) and then measuring the output. SPAM is measured in terms of fidelity, or the ability to complete these tasks at a high rate of success. The higher the fidelity the better because it means a quantum computer is performing these critical tasks with fewer errors.听
Researchers at 夜色直播 believe to reach the point at which the logical error rate beats the leading order physical error rate.
Neutral ytterbium atoms have long been a source of ions in trapped-ion quantum computers. Charged by lasers, ytterbium ions are transformed into qubits. But using ytterbium presents challenges. Expensive ultraviolet lasers are needed to manipulate ytterbium ions and the results can be difficult to measure.
Barium ions, however, are easier to measure and can be manipulated with less expensive and more stable lasers in the green range. But until this work with non-radioactive barium-137, researchers have only been able to achieve low SPAM errors with barium-133 atoms, which are radioactive and require special handling.听
鈥淣obody thought you could do quick, robust SPAM with non-radioactive barium-137,鈥 said Dr. Anthony Ransford, a 夜色直播 physicist and technical lead. 鈥淲e were able to devise a scheme that enabled us to initialize the qubits and measure them better than any other qubits. We are the first to do it.鈥
Being able to initialize non-radioactive barium-137 ions is just the first step.听 The goal is to incorporate these ions into future 夜色直播 hardware technologies.听
鈥淲e believe using non-radioactive barium-137 ions as qubits is an attractive path to increasingly robust, scalable, quantum hardware,鈥 Uttley said.听
夜色直播,听the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.听
Back in 2020, we to increase our Quantum Volume (QV), a measure of computational power, by 10x听per year for 5 years.听
Today, we鈥檙e pleased to share that we鈥檝e followed through on our commitment: Our System Model H2 has reached a Quantum Volume of 2虏鲁 = 8,388,608, proving not just that we always do what we say, but that our quantum computers are leading the world forward.听
The QV benchmark was developed by IBM to represent a machine鈥檚 performance, accounting for things like qubit count, coherence times, qubit connectivity, and error rates. :听
鈥渢he higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research."
Our announcement today is precisely what sets us apart from the competition. No one else has been bold enough to make a similar promise on such a challenging metric 鈥 and no one else has ever completed a five-year goal like this.
We chose QV because we believe it鈥檚 a great metric. For starters, it鈥檚 not gameable, like other metrics in the ecosystem. Also, it brings together all the relevant metrics in the NISQ era for moving towards fault tolerance, such as gate fidelity and connectivity.听
Our path to achieve a QV of over 8 million was led in part by Dr. Charlie Baldwin, who studied under the legendary Ivan H. Deutsch. Dr. Baldwin has made his name as a globally renowned expert in quantum hardware performance over the past decade, and it is because of his leadership that we don鈥檛 just claim to be the best, but that we can prove we are the best.听
鈥
Alongside the world鈥檚 biggest quantum volume, we have the industry鈥檚 . To that point, the table below breaks down the leading commercial specs for each quantum computing architecture.听
We鈥檝e never shied away from benchmarking our machines, because we know the results will be impressive. It is our provably world-leading performance that has enabled us to demonstrate:
As we look ahead to our next generation system, Helios, 夜色直播鈥檚 Senior Director of Engineering, Dr. Brian Neyenhuis, reflects: 鈥淲e finished our five-year commitment to Quantum Volume ahead of schedule, showing that we can do more than just maintain performance while increasing system size. We can improve performance while scaling.鈥澨
Helios鈥 performance will exceed that of our previous machines, meaning that 夜色直播 will continue to lead in performance while following through on our promises.听
As the undisputed industry leader, we鈥檙e racing against no one other than ourselves to deliver higher performance and to better serve our customers.
At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 听the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 夜色直播 Systems. 听
Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 夜色直播 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 听
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 听Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 听