In 1952, facing opposition from scientists who disbelieved her thesis that computer programming could be made more useful by using English words, the mathematician and computer scientist Grace Hopper published her first paper on compilers and wrote a precursor to the modern compiler, the A-0, while working at Remington Rand.
Over subsequent decades, the principles of compilers, whose task it is to translate between high level programming languages and machine code, took shape and new methods were introduced to support their optimization. One such innovation was the intermediate representation (IR), which was introduced to manage the complexity of the compilation process, enabling compilers to represent the program without loss of information, and to be broken up into modular phases and components.
This developmental path spawned the modern computer industry, with languages that work across hardware systems, middleware, firmware, operating systems, and software applications. It has also supported the emergence of the huge numbers of small businesses and professionals who make a living collaborating to solve problems using code that depends on compilers to control the underlying computing hardware.
Now, a similar story is unfolding in quantum computing. There are efforts around the world to make it simpler for engineers and developers across many sectors to take advantage of quantum computers by translating between high level coding languages and tools, and quantum circuits 鈥 the combinations of gates that run on quantum computers to generate solutions. Many of these efforts focus on hybrid quantum-classical workflows, which allow a problem to be solved by taking advantage of the strengths of different modes of computation, accessing central processing units (CPUs), graphical processing units (GPUs) and quantum processing units (QPUs) as needed.
Microsoft is a significant contributor to this burgeoning quantum ecosystem, providing access to multiple quantum computing systems through Azure Quantum, and a founding member of the , a cross-industry effort to make quantum computing source code portable across different hardware systems and modalities and to make quantum computing more useful to engineers and developers. QIR offers an interoperable specification for quantum programs, including a hardware profile designed for 夜色直播鈥檚 H-Series quantum computers, and has the capacity to support cross-compiling quantum and classical workflows, encouraging hybrid use-cases.
As one of the largest integrated quantum computing companies in the world, 夜色直播 was excited to become a QIR steering member alongside partners including Nvidia, Oak Ridge National Laboratory, Quantum Circuits Inc., and Rigetti Computing. 夜色直播 supports multiple open-source eco-system tools including its own family of open-source software development kits and compilers, such as TKET for general purpose quantum computation and lambeq for quantum natural language processing.
As founding members of QIR, 夜色直播 recently worked with Microsoft Azure Quantum alongside KPMG on a project that involved Microsoft鈥檚 Q#, and 夜色直播鈥檚 System Model H1, Powered by Honeywell. The Q# language has been designed for the specific needs of quantum computing and provides a high-level of abstraction enabling developers to seamlessly blend classical and quantum operations, significantly simplifying the design of hybrid algorithms.聽
KPMG鈥檚 quantum team wanted to translate an existing algorithm into and to take advantage of the unique and differentiating capabilities of 夜色直播鈥檚 H-Series, particularly qubit reuse, mid-circuit measurement and all-to-all connectivity. System Model H1 is the first generation trapped-ion based quantum computer built using the quantum charge-coupled device (QCCD) architecture. KPMG accessed the H1-1 QPU with 20 fully connected qubits. H1-1 recently achieved a Quantum Volume of 32,768, demonstrating a new high-water mark for the industry in terms of computation power as measured by quantum volume.
Q# and QIR offered an abstraction from hardware specific instructions, allowing the KPMG team, led by Michael Egan, to make best use of the H-Series and take advantage of runtime support for measurement-conditioned program flow control, and classical calculations within runtime.
Nathan Rhodes of the KPMG team wrote a tutorial about the project to demonstrate how an algorithm writer would use the KPMG code step-by-step as well as the particular features of QIR, Q# and the H-Series. It is the first time that code from a third party will be available for end users on Microsoft鈥檚 Azure portal.
the roll-out of integrated quantum computing on Azure Quantum, an important milestone in Microsoft鈥檚 Hybrid Quantum Computing Architecture, which provides tighter integration between quantum and classical processing.聽
Fabrice Frachon, Principal PM Lead, Azure Quantum, described this new Azure Quantum capability as a key milestone to unlock a new generation of hybrid algorithms on the path to scaled quantum computing.
The team ran an algorithm designed to solve an estimation problem, a promising use case for quantum computing, with potential application in fields including traffic flow, network optimization, energy generation, storage, and distribution, and to solve other infrastructure challenges. The 1 was compiled into quantum circuits from code written in a Q# environment with the QIR toolset, producing a circuit with approximately 500 gates, including 111 2-Qubit gates, running across three qubits with one reused three times, and achieving a fidelity of 0.92. This is possible because of the high gate fidelity and the low SPAM error which enables qubit reuse.
The results compare favorably with the more standard Quantum Phase Estimation version described in 鈥,鈥 by Michael A. Nielsen and Isaac Chuang.
夜色直播鈥檚 H1 had five capabilities that were crucial to this project:
The project emphasized the importance of companies experimenting with quantum computing, so they can identify any possible IT issues early on, understanding the development environment and how quantum computing integrates with current workflows and processes.
As the global quantum ecosystem continues to advance, collaborative efforts like QIR will play a crucial role in bringing together industrial partners seeking novel solutions to challenging problems, talented developers, engineers, and researchers, and quantum hardware and software companies, which will continue to add deep scientific and engineering knowledge and expertise.
夜色直播,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.聽
Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, to McKinsey & Company, underscoring how today鈥檚 quantum computers are already delivering customer value in their current phase of development.
This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address. 聽
Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction鈥攁 capability that, until now, has eluded the industry. 聽
夜色直播 is the first鈥攁nd only鈥攃ompany to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.
In this regard, 夜色直播 is the first company to step from the so-called 鈥淣ISQ鈥 (noisy intermediate-scale quantum) era towards utility-scale quantum computers.
A quantum computer uses operations called gates to process information in ways that even today鈥檚 fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:
A system that can run both gates is classified as and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement 鈥榥on-Clifford鈥 gates is not really a quantum computer.
A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. 夜色直播 has the best and brightest scientists dedicated to keeping our systems鈥 error rates the lowest in the world.
For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing 鈥渁 full gate set鈥 with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and 鈥攖oo high for any practical use.
Today, we have published that establishes 夜色直播 as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.
The describes how scientists at 夜色直播 used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any .
Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.
Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.
In the , co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called 鈥渃ode switching鈥.
Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we鈥檝e previously demonstrated full error correction and the other ingredients for universality.
In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than with error correction. Notably, this process only cost 28 qubits . This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.
Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.
With all of the required pieces now, finally, in place, we are 鈥榝ully鈥 equipped to become the first company to perform universal fully fault-tolerant computing鈥攋ust in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.
If we are to create 鈥榥ext-gen鈥 AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that 夜色直播 continues to lead by demonstrating concrete progress 鈥 advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday鈥檚 tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models鈥攄esigned for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we鈥檙e thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap 鈥 but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge. 聽
Achieving that future requires models that are efficient, scalable, and actually run on today鈥檚 quantum hardware.
That鈥檚 what we鈥檝e built.
Until Quixer, quantum transformers were the result of a brute force 鈥渃opy-paste鈥 approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it鈥檚 not a translation 鈥 it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We鈥檝e already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we鈥檒l explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn鈥檛 just about one model. It鈥檚 a signal that the quantum AI era has begun, and that 夜色直播 is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today鈥檚 high-performance computing (HPC) and AI environments. At ISC 2025, meet the 夜色直播 team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
夜色直播 is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10鈥13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what鈥檚 possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration鈥攆rom near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!