With the rapid evolution of Quantum Computing, users are contemplating the best way to begin to integrate Quantum capabilities into their existing HPC and AI infrastructure. Find our experts at the , May 12th-16th, in Hamburg, Germany to discuss our world leading hardware, applications, and case studies.听
Drop by Booth K50 in the exhibit hall to meet tour team and see a display of our System Model H2 chip, Powered by Honeywell.听
If you鈥檇 like to schedule a 1:1 meeting, send us an email to schedule a time to meet. We have reserved meeting room Hall 5 at ISC, but we鈥檇 be happy to set up time to meet with you at or after the event.
Our team will be presenting on a range of topics about integrating quantum computing into existing HPC infrastructure. They鈥檒l be speaking about our hardware features and how you can leverage quantum computing with your existing HPC cluster.
2:30pm 鈥 3:00pm | Hall 4, ground level in the First-Time Exhibitor Pitch
Understanding Opportunities with Quantum Computing: Learn about our roadmap and key strategies to accelerate your current HPC clusters with the integration of quantum computing.听
Presented by Nash Palaniswamy, Chief Commercial Officer, 夜色直播
2:00pm 鈥 2:30pm | GENCI Booth K40
Simulation of Transition Metal Oxide (TMO) Atomic Layer Deposition (ALD): A Study of the modelling of electronic energies used in the reactions involved for ALD of ZrO2 and of the reactivity of organometallic precursors used in ALD technology for controlling the quality of thin film deposition on different substrates. The study is a collaboration between C12 Quantum Electronics, Air Liquide and 夜色直播, with support from PAQ Ile de France.
Presented by Maud Einhorn, Technical Account Manager, and Gabriela Cimpan, Partner Manager, 夜色直播
2:20pm 鈥 2:35pm | Hall Z 鈥 3rd floor
The Trapped-Ion Quantum Processors at 夜色直播: 夜色直播 has constructed two generations of QCCD (quantum charge-coupled device) quantum processors. These processors use trapped-ions for qubits and sympathetic cooling, and shuttling operations to achieve high-fidelity gating operations on individual qubits and between any pair of qubits 鈥 making them fully-connected. In this talk, Dave will discuss 夜色直播鈥檚 efforts to rigorously benchmark the performance of these machines, highlighting their strengths and weaknesses. He鈥檒l also give a brief survey of our efforts toward near-term quantum advantage and quantum error correction. Finally, he鈥檒l sketch out some technological developments aimed at scaling these processors and the implications for future devices.
Presented by David Hayes, Sr. R&D Manager for Theory and Architecture
12:30pm 鈥 1:00pm | Meeting Room Hall 5
3:30pm 鈥 4:00pm | Meeting Room Hall 5
Quantum Computing, Error Correction, and Scaling for the Future at 夜色直播: Quantum computing promises to provide significant computational savings in valuable problems such as chemistry, materials, and cybersecurity. To make this a reality, errors in quantum operations must be suppressed significantly below where they are today, and the size of quantum computing hardware must be increased. 夜色直播 has recently made significant strides in scaling to larger sizes. Join the session to hear about these exciting results, our plans to scale, and a look towards the future.
Presented by Chris Langer, Fellow and Chairman of the Technical Board, 夜色直播
1:00pm 鈥 1:20pm | Hall H, Booth L01 in the HPC Solutions Forum
鈥Harnessing the potential of quantum computing: As the landscape of quantum computing continues to rapidly evolve, the question of when to invest in quantum computing knowledge remains a key strategic consideration for organizations. This talk will explore the challenge of quantum readiness by surveying some of the research collaborations 夜色直播 has performed with a range of industry-leading organizations. Using real-world case studies, we will highlight the diverse array of sectors poised to benefit from early quantum adoption, including pharmaceuticals, finance, logistics, and cybersecurity. This talk begins to unpack why many first mover enterprise organizations have made significant investments in quantum readiness already, rather than deferring until the technology matures further.听
Presented by Maud Einhorn, Technical Account Manager, 夜色直播
4:30pm 鈥 5:00pm | Hall Y1 - 2nd floor
Workshop on Benchmarking and Scaling the Quantum Charged Coupled Device Quantum Computing architecture in the Quantum and Hybrid Quantum-Classical Computing Approaches:听The QCCD architecture provides a unique approach to quantum computing where qubits are mobile and operating zones are fixed. In contrast to QC architectures where qubit and couplings between them are fixed, the QCCD architecture naturally provides all-to-all connectivity and high-fidelity operations. Additional advanced features include mid-circuit measurement, qubit reset, conditional logic, and variable angle gates. The talk will present benchmarking of our machines and recent progress towards scaling to larger systems.
Presented by Chris Langer, Fellow and Chair of the Technical Board, 夜色直播
夜色直播,听the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.听
Twenty-five years ago, scientists accomplished a task likened to a biological : the sequencing of the entire human genome.
The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.
Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome 鈥 including the availability of a 鈥渞eference genome鈥 鈥 have aided progress, alongside enormous advances in algorithms and computing power.
But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.
The is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.
One consortium 鈥 led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University 鈥 is taking a leading role.
鈥淭he overall goal of the team鈥檚 project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences 鈥 a task that can go beyond the capabilities of current classical computers鈥 鈥 Wellcome Sanger Institute , July 2025
Earlier this year, the Sanger Institute selected 夜色直播 as a technology partner in their bid to succeed in the Q4Bio challenge.
Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).
In this collaboration, the scientific research team can take advantage of 夜色直播鈥檚 full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.
鈥淲e were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world鈥檚 highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.鈥 鈥 Rajeeb Hazra, President and CEO of 夜色直播
At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing鈥檚 readiness for tackling real-world use cases.
Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.
Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and 夜色直播鈥檚 partnership reminds us that we may soon reach an important step forward in human health research 鈥 one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.
鈥淨uantum computational biology has long inspired us at 夜色直播, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.鈥 鈥 Ilyas Khan, Founder and Chief Product Officer of 夜色直播
Every year, The IEEE International Conference on Quantum Computing and Engineering 鈥 or 鈥 brings together engineers, scientists, researchers, students, and others to learn about advancements in quantum computing.
This year鈥檚 conference from August 31st 鈥 September 5th, is being held in Albuquerque, New Mexico, a burgeoning epicenter for quantum technology innovation and the home to our new location that will support ongoing collaborative efforts to advance the photonics technologies critical to furthering our product development.
Throughout IEEE Quantum Week, our quantum experts will be on-site to share insights on upgrades to our hardware, enhancements to our software stack, our path to error correction, and more.
Meet our team at Booth #507 and join the below sessions to discover how 夜色直播 is forging the path to fault-tolerant quantum computing with our integrated full-stack.
Quantum Software 2.1: Open Problems, New Ideas, and Paths to Scale
1:15 鈥 2:10pm MDT | Mesilla
We recently shared the details of our new software stack for our next-generation systems, including Helios (launching in 2025). 夜色直播鈥檚 Agust铆n Borgna will deliver a lighting talk to introduce Guppy, our new, open-source programming language based on Python, one of the most popular general-use programming languages for classical computing.
PAN08: Progress and Platforms in the Era of Reliable Quantum Computing
1:00 鈥 2:30pm MDT | Apache
We are entering the era of reliable quantum computing. Across the industry, quantum hardware and software innovators are enabling this transformation by creating reliable logical qubits and building integrated technology stacks that span the application layer, middleware and hardware. Attendees will hear about current and near-term developments from Microsoft, 夜色直播 and Atom Computing. They will also gain insights into challenges and potential solutions from across the ecosystem, learn about Microsoft鈥檚 qubit-virtualization system, and get a peek into future developments from 夜色直播 and Microsoft.
BOF03: Exploring Distributed Quantum Simulators on Exa-scale HPC Systems
3:00 鈥 4:30pm MDT | Apache
The core agenda of the session is dedicated to addressing key technical and collaborative challenges in this rapidly evolving field. Discussions will concentrate on innovative algorithm design tailored for HPC environments, the development of sophisticated hybrid frameworks that seamlessly combine classical and quantum computational resources, and the crucial task of establishing robust performance benchmarks on large-scale CPU/GPU HPC infrastructures.
PAN11: Real-time Quantum Error Correction: Achievements and Challenges
1:00 鈥 2:30pm MDT | La Cienega
This panel will explore the current state of real-time quantum error correction, identifying key challenges and opportunities as we move toward large-scale, fault-tolerant systems. Real-time decoding is a multi-layered challenge involving algorithms, software, compilation, and computational hardware that must work in tandem to meet the speed, accuracy, and scalability demands of FTQC. We will examine how these challenges manifest for multi-logical qubit operations, and discuss steps needed to extend the decoding infrastructure from intermediate-scale systems to full-scale quantum processors.
Keynote by NVIDIA
8:00 鈥 9:30am MDT | Kiva Auditorium
During his keynote talk, NVIDIA鈥檚 Head of Quantum Computing Product, Sam Stanwyck, will detail our partnership to fast-track commercially scalable quantum supercomputers. Discover how 夜色直播 and NVIDIA are pushing the boundaries to deliver on the power of hybrid quantum and classical compute 鈥 from integrating NVIDIA鈥檚 CUDA-Q Platform with access to 夜色直播鈥檚 industry-leading hardware to the recently announced NVIDIA Quantum Research Center (NVAQC).
Visible Photonic Component Development for Trapped-Ion Quantum Computing
September 2nd from 6:30 - 8:00pm MDT | September 3rd from 9:30 - 10:00am MDT |听September 4th from 11:30 - 12:30pm MDT
鈥Authors: Elliot Lehman, Molly Krogstad, Molly P. Andersen, Sara Cambell, Kirk Cook, Bryan DeBono, Christopher Ertsgaard, Azure Hansen, Duc Nguyen, Adam听Ollanik, Daniel Ouellette, Michael Plascak, Justin T. Schultz, Johanna Zultak, Nicholas Boynton, Christopher DeRose,Michael Gehl, and Nicholas Karl
Scaling Up Trapped-Ion Quantum Processors with Integrated Photonics
September 2nd from 6:30 - 8:00pm MDT and 2:30 - 3:00pm MDT |听September 4th from 9:30 - 10:00am MDT
Authors: Molly Andersen, Bryan DeBono, Sara Campbell, Kirk Cook, David Gaudiosi, Christopher Ertsgaard, Azure Hansen, Todd Klein, Molly Krogstad, Elliot Lehman, Gregory MacCabe, Duc Nguyen, Nhung Nguyen, Adam Ollanik, Daniel Ouellette, Brendan Paver, Michael Plascak, Justin Schultz and Johanna Zultak
In a partnership that is part of a long-standing relationship with Los Alamos National Laboratory, we have been working on new methods to make quantum computing operations more efficient, and ultimately, scalable.
Learn more in our Research Paper:
Our teams collaborated with Sandia National Laboratories demonstrating our leadership in benchmarking. In this paper, we implemented a technique devised by researchers at Sandia to measure errors in mid-circuit measurement and reset. Understanding these errors helps us to reduce them while helping our customers understand what to expect while using our hardware.
Learn more in our Research Paper:
From machine learning to quantum physics, tensor networks have been quietly powering the breakthroughs that will reshape our society. Originally developed by the legendary Nobel laureate Roger Penrose, they were first used to tackle esoteric problems in physics that were previously unsolvable.
Today, tensor networks have become indispensable in a huge number of fields, including both classical and quantum computing, where they are used everywhere from quantum error correction (QEC) decoding to quantum machine learning.
In , we teamed up with luminaries from the University of British Columbia, California Institute of Technology, University of Jyv盲skyl盲, KBR Inc, NASA, Google Quantum AI, NVIDIA, JPMorgan Chase, the University of Sherbrooke, and Terra Quantum AG to provide a comprehensive overview of the use of tensor networks in quantum computing.
Part of what drives our leadership in quantum computing is our commitment to building the best scientific team in the world. This is precisely why we hired Dr. Reza Haghshenas, one of the world鈥檚 leading experts in tensor networks, and a co-author on the paper.
Dr. Haghshenas has been researching tensor networks for over a decade across both academia and industry. Dr. Haghshenas did postdoctoral work under , a leading figure in the use of tensor networks for quantum physics and chemistry.
鈥淲orking with Dr. Garnet Chan at Caltech was a formative experience for me鈥, remarked Dr. Haghshenas. 鈥淲hile there, I contributed to the development of quantum simulation algorithms and advanced classical methods like tensor networks to help interpret and simulate many-body physics.鈥
Since joining 夜色直播, Dr. Haghshenas has led projects that bring tensor network methods into direct collaboration with experimental hardware teams 鈥 exploring quantum magnetism on real quantum devices and helping demonstrate early signs of quantum advantage. He also contributes to , helping the broader research community access these methods.
Dr. Haghshenas鈥 work sits in a broad and vibrant ecosystem exploring novel uses of tensor networks. Collaborations with researchers like Dr. Chan at Caltech, and NVIDIA have brought GPU-accelerated tools to bear on the forefront of applying tensor networks to quantum chemistry, quantum physics, and quantum computing.
Of particular interest to those of us in quantum computing, the best methods (that we know of) for simulating quantum computers with classical computers rely on tensor networks. Tensor networks provide a nice way of representing the entanglement in a quantum algorithm and how it spreads, which is crucial but generally quite difficult for classical algorithms. In fact, it鈥檚 partly tensor networks鈥 ability to represent entanglement that makes them so powerful for quantum simulation. Importantly, it is our in-house expertise with tensor networks that makes us confident we are indeed moving past classical capabilities.
Tensor networks are not only crucial to cutting-edge simulation techniques. 听At 夜色直播, we're working on understanding and implementing quantum versions of classical tensor network algorithms, from quantum matrix product states to holographic simulation methods. In doing this, we are leveraging decades of classical algorithm development to advance quantum computing.
A topic of growing interest is the role of tensor networks in QEC, particularly in a process known as decoding. QEC works by encoding information into an entangled state of multiple qubits and using syndrome measurements to detect errors. These measurements must then be decoded to identify the specific error and determine the appropriate correction. This decoding step is challenging鈥攊t must be both fast (within the qubit鈥檚 coherence time) and accurate (correctly identifying and fixing errors). Tensor networks are emerging as one of the most for tackling this task.
Tensor networks are more than just a powerful computational tool 鈥 they are a bridge between classical and quantum thinking. As this new paper shows, the community鈥檚 understanding of tensor networks has matured into a robust foundation for advancing quantum computing, touching everything from simulation and machine learning to error correction and circuit design.
At 夜色直播, we see this as an evolutionary step, not just in theory, but in practice. By collaborating with top minds across academia and industry, we're charting a path forward that builds on decades of classical progress while embracing the full potential of quantum mechanics. This transition is not only conceptual but algorithmic, advancing how we formulate and implement methods utilizing efficiently both classical and quantum computing. Tensor networks aren鈥檛 just helping us keep pace with classical computing; they鈥檙e helping us to transcend it.