ҹɫֱ

Introducing Quantum Origin

December 7, 2021
  • Quantum Origin is the world’s first commercial product built using quantum computers that delivers an outcome that classical computers could not achieve
  • Quantum Origin is the first platform to derive cryptographic keys using the output of a quantum computer to ensure data is protected at foundational level against evolving attacks
  • It provides immediate protection to enterprises and governments from current security issues, arising from the use of weaker random number generators (RNGs)
  • Quantum Origin also helps protect against ‘hack now, decrypt later’ attacks, which are already happening and will have future implications
  • The quantum-enhanced cryptographic keys generated by Quantum Origin are based on verifiable quantum randomness and can be integrated into existing systems. The protocol relies on “entanglement”, a unique feature of quantum mechanics.
  • Quantum Origin supports traditional algorithms, such as RSA or AES, as well as post-quantum cryptography algorithms currently being standardized by the National Institute for Standards and Technology (NIST)

Cambridge Quantum (CQ), the global leader in quantum software, and a wholly owned subsidiary of ҹɫֱ, the world’s leading integrated quantum computing company, is pleased to announce that it is launching Quantum Origin – the world’s first commercially available cryptographic key generation platform based on verifiable quantum randomness. It is the first commercial product built using a noisy, intermediate-scale quantum (NISQ) computer and has been built to secure the world’s data from both current and advancing threats to current encryption.

Randomness is critical to securing current security solutions as well as protecting systems from the future threat of quantum attacks. These attacks will further weaken deterministic methods of random number generation, as well as methods that are not verifiably random and from a quantum source.

Today’s systems are protected by encryption standards such as RSA and AES. Their resilience is based on the inability to “break” a long string from a random number generator (RNG). Today’s RNGs, however, lack true, verifiable randomness; the numbers being generated aren’t as unpredictable as thought, and, as a result, such RNGs have been the point of failure in a growing number of cyber attacks. To add to this, the potential threat of quantum attacks is now raising the stakes further, incentivizing criminals to steal encrypted data passing over the internet, with a view to decrypting it later using quantum computers. So-called “hack now, decrypt later” attacks.

Quantum Origin is a cloud-hosted platform that protects against these current and future threats. It uses the unpredictable nature of quantum mechanics to generate cryptographic keys seeded with verifiable quantum randomness from ҹɫֱ’s H-Series quantum computers, Powered by Honeywell. It supports traditional algorithms, such as RSA or AES, as well as post-quantum cryptography algorithms currently being standardized by the National Institute for Standards and Technology (NIST).

“We have been working for a number of years now on a method to efficiently and effectively use the unique features of quantum computers in order to provide our customers with a defense against adversaries and criminals now and in the future once quantum computers are prevalent,” said Ilyas Khan, CEO of ҹɫֱ and Founder of Cambridge Quantum. He added “Quantum Origin gives us the ability to be safe from the most sophisticated and powerful threats today as well threats from quantum computers in the future.”

Duncan Jones, head of cybersecurity at Cambridge Quantum, said: “When we talk about protecting systems using quantum-powered technologies, we’re not just talking about protecting them from future threats. From large-scale takedowns of organizations, to nation state hackers and the worrying potential of ‘hack now, decrypt later’ attacks, the threats are very real today, and very much here to stay. Responsible enterprises need to deploy every defense possible to ensure maximum protection at the encryption level today and tomorrow.”

Quantum-enhanced keys on demand

With Quantum Origin, when an organization requires quantum-enhanced keys to be generated, it can now make a call via an API. Quantum Origin generates the keys before encrypting them with a transport key and securely relaying them back to the organization. To give organizations a high-level of assurance that their encryption keys are as unpredictable as possible, Quantum Origin tests the entire output from the quantum computers, ensuring that each key is seeded from verifiable quantum randomness.

These keys are then simple and easy to integrate within customers' existing systems because they’re provided in a format that can be consumed by traditional cybersecurity systems and hardware. This end-to-end approach ensures key generation is on-demand and is capable of scaling with use, all while remaining secure.

Quantum Origin in practice

Quantum Origin keys should be used in any scenario where there is a need for strong cybersecurity. At launch, Cambridge Quantum will offer Quantum Origin to financial services companies and vendors of cybersecurity products before expanding into other high priority sectors, such as telecommunications, energy, manufacturing, defense and government.

The technology has already been used in a series of projects with launch partners. Axiom Space used Quantum Origin to conduct a test of post-quantum encrypted communication between the ISS and Earth — sending the message “Hello Quantum World” back to earth encrypted with post-quantum keys seeded from verifiable quantum randomness. Fujitsu integrated Quantum Origin into its software-defined wide area network (SDWAN) using quantum-enhanced keys alongside traditional algorithms.

For more information:

Learn more about Quantum Origin
Discover our partners
Explore our case studies
Book a demo with our experts

About ҹɫֱ

ҹɫֱ, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. ҹɫֱ’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, ҹɫֱ leads the quantum computing revolution across continents. 

Blog
September 9, 2025
Preparation is everything

At ҹɫֱ, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.

A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or “state prep,” is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.

Recently, our algorithm teams have been tackling this challenge from all angles. We’ve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.

In the , our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.

To do this, our team investigated two different state prep methods. The first method uses , implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.

Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the “sparse state preparation” scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.

In the , our team focused on state prep for materials simulation. Generally, it’s much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.

In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.

Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature – and approaches like this are what will allow us to perform the necessary studies to one day get us there.

Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the , our team made fault-tolerant state preparation—the critical first step in any fault-tolerant algorithm—roughly twice as efficient. With our new “flag at origin” technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.

The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we’ve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.

On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team’s work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem—and is quite timely given our recent advances into true fault-tolerance.

This generality isn’t just applicable to different codes, it’s also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This “state diversity” is especially valuable when working with the best codes – codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.

From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.

technical
All
Blog
August 28, 2025
Quantum Computing Joins the Next Frontier in Genomics
  • The Sanger Institute illustrates the value of quantum computing to genomics research
  • ҹɫֱ supports developments in a field that promises to deliver a profound and positive societal impact

Twenty-five years ago, scientists accomplished a task likened to a biological : the sequencing of the entire human genome.

The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.

Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome – including the availability of a “reference genome” – have aided progress, alongside enormous advances in algorithms and computing power.

But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.

Quantum Challenge: Accepted

The is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.

One consortium – led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University – is taking a leading role.

“The overall goal of the team’s project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences – a task that can go beyond the capabilities of current classical computers” – Wellcome Sanger Institute , July 2025
Selecting ҹɫֱ

Earlier this year, the Sanger Institute selected ҹɫֱ as a technology partner in their bid to succeed in the Q4Bio challenge.

Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).

In this collaboration, the scientific research team can take advantage of ҹɫֱ’s full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.

“We were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world’s highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.” – Rajeeb Hazra, President and CEO of ҹɫֱ
Quantum for Biology

At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing’s readiness for tackling real-world use cases.

Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.

Bacteriophage PhiX174, published under a Creative Commons License https://commons.wikimedia.org/wiki/File:Phi_X_174.png

Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and ҹɫֱ’s partnership reminds us that we may soon reach an important step forward in human health research – one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.

“Quantum computational biology has long inspired us at ҹɫֱ, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.” – Ilyas Khan, Founder and Chief Product Officer of ҹɫֱ

Glossary of terms: Understanding how quantum computing supports complex genomic research


Term Definition
Algorithms
A set of rules or processes for performing calculations or solving computational problems.
Classical Computing Computing technology based on binary information storage (bits represented as 0 or 1).
DNA Sequence The exact order of nucleotides (A, T, C, G) within a DNA molecule.
Genome The complete set of genetic material (DNA) present in an organism.
Graph-based Genome (Sequence Graph) A non-linear network representation of genomic sequences capturing the diversity and relationships among multiple genomes.
High Performance Compute (HPC) Advanced classical computing systems designed for handling computationally intensive tasks, simulations, and data processing.
Pangenome A collection of multiple genome sequences representing genetic diversity within a population or species.
Precision Medicine Tailored medical treatments based on individual genetic, environmental, and lifestyle factors.
ҹɫֱ The world’s largest quantum computing company, ҹɫֱ systems lead the world for the rigorous Quantum Volume benchmark and were the first to offer commercial access to highly reliable “Level 2 – resilient” quantum computing.
Quantum Bit (Qubit) Basic unit of quantum information, which unlike classical bits, can exist in multiple states simultaneously (superposition).
Quantum Computing Computing approach using quantum-mechanical phenomena (e.g., superposition, entanglement, interference) for enhanced problem-solving capabilities.
Quantum Pangenomics Interdisciplinary field combining quantum computing with genomics to address computational challenges in analyzing genetic data and pangenomes.
Quantum Volume A specific test of a quantum computer’s performance on complex circuits. The higher the quantum volume the more powerful the system. ҹɫֱ’s 56-qubit System Model H2 achieved a record quantum volume of 8,388,608 in May 2025.
Quantum Superposition A fundamental quantum phenomenon in which particles can simultaneously exist in multiple states, enabling complex computational tasks.
Sequence Mapping Determining how sequences align or correspond within a larger genomic reference or graph.
Wellcome Leap Quantum for Bio (Q4Bio) Initiative funding research combining quantum computing and biological sciences to address computational challenges.
Wellcome Sanger Institute The Sanger Institute tackles some of the most difficult challenges in genomic research.
partnership
All
Blog
August 26, 2025
IEEE Quantum Week 2025

Every year, The IEEE International Conference on Quantum Computing and Engineering – or – brings together engineers, scientists, researchers, students, and others to learn about advancements in quantum computing.

This year’s conference from August 31st – September 5th, is being held in Albuquerque, New Mexico, a burgeoning epicenter for quantum technology innovation and the home to our new location that will support ongoing collaborative efforts to advance the photonics technologies critical to furthering our product development.

Throughout IEEE Quantum Week, our quantum experts will be on-site to share insights on upgrades to our hardware, enhancements to our software stack, our path to error correction, and more.

Meet our team at Booth #507 and join the below sessions to discover how ҹɫֱ is forging the path to fault-tolerant quantum computing with our integrated full-stack.

September 2nd


Quantum Software 2.1: Open Problems, New Ideas, and Paths to Scale
1:15 – 2:10pm MDT | Mesilla

We recently shared the details of our new software stack for our next-generation systems, including Helios (launching in 2025). ҹɫֱ’s Agustín Borgna will deliver a lighting talk to introduce Guppy, our new, open-source programming language based on Python, one of the most popular general-use programming languages for classical computing.

September 3rd

PAN08: Progress and Platforms in the Era of Reliable Quantum Computing
1:00 – 2:30pm MDT | Apache

We are entering the era of reliable quantum computing. Across the industry, quantum hardware and software innovators are enabling this transformation by creating reliable logical qubits and building integrated technology stacks that span the application layer, middleware and hardware. Attendees will hear about current and near-term developments from Microsoft, ҹɫֱ and Atom Computing. They will also gain insights into challenges and potential solutions from across the ecosystem, learn about Microsoft’s qubit-virtualization system, and get a peek into future developments from ҹɫֱ and Microsoft.

BOF03: Exploring Distributed Quantum Simulators on Exa-scale HPC Systems
3:00 – 4:30pm MDT | Apache

The core agenda of the session is dedicated to addressing key technical and collaborative challenges in this rapidly evolving field. Discussions will concentrate on innovative algorithm design tailored for HPC environments, the development of sophisticated hybrid frameworks that seamlessly combine classical and quantum computational resources, and the crucial task of establishing robust performance benchmarks on large-scale CPU/GPU HPC infrastructures.

September 4th

PAN11: Real-time Quantum Error Correction: Achievements and Challenges
1:00 – 2:30pm MDT | La Cienega

This panel will explore the current state of real-time quantum error correction, identifying key challenges and opportunities as we move toward large-scale, fault-tolerant systems. Real-time decoding is a multi-layered challenge involving algorithms, software, compilation, and computational hardware that must work in tandem to meet the speed, accuracy, and scalability demands of FTQC. We will examine how these challenges manifest for multi-logical qubit operations, and discuss steps needed to extend the decoding infrastructure from intermediate-scale systems to full-scale quantum processors.

September 5th

Keynote by NVIDIA
8:00 – 9:30am MDT | Kiva Auditorium

During his keynote talk, NVIDIA’s Head of Quantum Computing Product, Sam Stanwyck, will detail our partnership to fast-track commercially scalable quantum supercomputers. Discover how ҹɫֱ and NVIDIA are pushing the boundaries to deliver on the power of hybrid quantum and classical compute – from integrating NVIDIA’s CUDA-Q Platform with access to ҹɫֱ’s industry-leading hardware to the recently announced NVIDIA Quantum Research Center (NVAQC).

Featured Research at the IEEE Poster Session:

Visible Photonic Component Development for Trapped-Ion Quantum Computing
September 2nd from 6:30 - 8:00pm MDT | September 3rd from 9:30 - 10:00am MDT | September 4th from 11:30 - 12:30pm MDT
Authors: Elliot Lehman, Molly Krogstad, Molly P. Andersen, Sara Cambell, Kirk Cook, Bryan DeBono, Christopher Ertsgaard, Azure Hansen, Duc Nguyen, Adam Ollanik, Daniel Ouellette, Michael Plascak, Justin T. Schultz, Johanna Zultak, Nicholas Boynton, Christopher DeRose,Michael Gehl, and Nicholas Karl

Scaling Up Trapped-Ion Quantum Processors with Integrated Photonics
September 2nd from 6:30 - 8:00pm MDT and 2:30 - 3:00pm MDT | September 4th from 9:30 - 10:00am MDT

Authors: Molly Andersen, Bryan DeBono, Sara Campbell, Kirk Cook, David Gaudiosi, Christopher Ertsgaard, Azure Hansen, Todd Klein, Molly Krogstad, Elliot Lehman, Gregory MacCabe, Duc Nguyen, Nhung Nguyen, Adam Ollanik, Daniel Ouellette, Brendan Paver, Michael Plascak, Justin Schultz and Johanna Zultak

Research Collaborations with the Local Ecosystem

In a partnership that is part of a long-standing relationship with Los Alamos National Laboratory, we have been working on new methods to make quantum computing operations more efficient, and ultimately, scalable.

Learn more in our Research Paper:

Our teams collaborated with Sandia National Laboratories demonstrating our leadership in benchmarking. In this paper, we implemented a technique devised by researchers at Sandia to measure errors in mid-circuit measurement and reset. Understanding these errors helps us to reduce them while helping our customers understand what to expect while using our hardware.

Learn more in our Research Paper:

events
All