ҹɫֱ

InQuanto Integrates NVIDIA cuQuantum for Native GPU Support and Prepares for the Era of Quantum Supercomputing

With quantum progress accelerating, we introduce InQuanto v4.0 and explain how it supports customers and researchers exploring the application of AI, HPC and quantum computing – A.K.A. Quantum Supercomputing – to problems in chemistry and related fields

November 21, 2024

Chemistry plays a central role in the modern global economy, as it has for centuries. From Antoine Lavoisier to Alessandro Volta, Marie Curie to Venkatraman Ramakrishnan, pioneering chemists drove progress in fields such as combustion, electrochemistry, and biochemistry. They contributed to our mastery of critical 21st century materials such as biodegradable plastics, semiconductors, and life-saving pharmaceuticals.

Advances in high-performance computing (HPC) and AI have brought fundamental and industrial science ever more within the scope of methods like data science and predictive analysis. In modern chemistry, it has become routine for research to be aided by computational models run in silico. Yet, due to their intrinsically quantum mechanical nature, “strongly correlated” chemical systems – those involving strongly interacting electrons or highly interdependent molecular behaviors – prove extremely hard to accurately simulate using classical computers alone. Quantum computers running quantum algorithms are designed to meet this need. Strongly correlated systems turn up in potential applications such as smart materials, high-temperature superconductors, next-generation electronic devices, batteries and fuel cells, revealing the economic potential of extending our understanding of these systems, and the motivation to apply quantum computing to computational chemistry.

For senior business and research leaders driving value creation and scientific discovery, a critical question is how will the introduction of quantum computers affect the trajectory of computational approaches to fundamental and industrial science?

Introducing InQuanto v4.0

This is the exciting context for our announcement of InQuanto v4.0, the latest iteration of our computational chemistry platform for quantum computers. Developed over many years in close partnership with computational chemists and materials scientists, InQuanto has become an essential tool for teams using the most advanced methods for simulating molecular and material systems. InQuanto v4.0 is packed with powerful updates, including the capability to incorporate NVIDIA’s tensor network methods for large-scale classical simulations supported by graphical processing units (GPUs).

When researching chemistry on quantum computers, we use classical HPC to perform tasks such as benchmarking, and for classical pre- and post-processing with computational chemistry methods such as density functional theory. This powerful hybrid quantum-classical combination with InQuanto accelerated our work with partners such as , and . Global businesses and national governments alike are gearing up for the use of such hybrid “quantum supercomputers” to become standard practice.

In a recent technical blog post, we explored the rapid development and deployment of InQuanto for research and enterprise users, offering insights for combining quantum and high-performance classical methods with only a few lines of code. Here, we provide a higher-level overview of the value InQuanto brings to fundamental and industrial research teams.

InQuanto v4.0 – under the hood

InQuanto v4.0 is the most powerful version to date of our advanced quantum computational chemistry platform. It supports our users in applying quantum and classical computing methods to problems in chemistry and, increasingly, adjacent fields such as condensed matter physics.

Like previous versions of InQuanto, this one offers state-of-the-art algorithms, methods, and error handling techniques out of the box. Quantum error correction and detection have enabled rapid progress in quantum computing, such as groundbreaking demonstrations in partnership with Microsoft, in April and September 2024, of highly reliable “logical qubits”. Qubits are the core information-carrying components of a quantum computer and by forming them into an ensemble, they are more resistant to errors, allowing more complex problems to be tackled while producing accurate results. InQuanto continues to offer leading-edge quantum error detection protocols as standard and supports users to explore the potential of algorithms for fault-tolerant machines.

InQuanto v4.0 also marks the significant step of introducing native support for tensor networks using GPUs to accelerate simulations. In 2022, ҹɫֱ and NVIDIA teamed up on one of the quantum computing industry’s earliest quantum-classical collaborations. InQuanto v4.0 introduces classical tensor network methods via an interface with NVIDIA's cuQuantum SDK. Interfacing with cuQuantum enables the simulation of many quantum circuits via the use of GPUs for applications in chemistry that were previously inaccessible, particularly those with larger numbers of qubits.

“Hybrid quantum-classical supercomputing is accelerating quantum computational chemistry research. With ҹɫֱ’s InQuanto v4.0 platform and NVIDIA’s cuQuantum SDK, InQuanto users now have access to unique tensor-network-based methods, enabling large-scale and high-precision quantum chemistry simulations” - Tim Costa, Senior Director of HPC and Quantum Computing at NVIDIA

We are also responding to our users’ needs for more robust, enterprise-grade management of applications and data, by incorporating InQuanto into ҹɫֱ Nexus. This integration makes it far easier and more efficient to build hybrid workflows, decode and store data, and use powerful analytical methods to accelerate scientific and technical progress in critical fields in natural science.

Adding further capabilities, we our integration of InQuanto with Microsoft’s Azure Quantum Elements (AQE), allowing users to seamlessly combine AQE’s state-of-the-art HPC and AI methods with the enhanced quantum capabilities of InQuanto in a single workflow. The first end-to-end workflow using HPC, AI and quantum computing was demonstrated using AQE and ҹɫֱ Systems hardware, achieving chemical accuracy and demonstrating the advantage of logical qubits compared to physical qubits in modeling a catalytic reaction.

Where InQuanto takes us next

In the coming years, we expect to see scientific and economic progress using the powerful combination of quantum computing, HPC, and artificial intelligence. Each of these computing paradigms contributes to our ability to solve important problems. Together, their combined impact is far greater than the sum of their parts, and we recognize that these have the potential to drive valuable computational innovation in industrial use-cases that really matter, such as in energy generation, transmission and storage, and in chemical processes essential to agriculture, transport, and medicine.

Building on our recent hardware roadmap announcement, which supports scientific quantum advantage and a commercial tipping point in 2029, we are demonstrating the value of owning and building out the full quantum computing stack with a unified goal of accelerating quantum computing, integrating with HPC and AI resources where it shows promise, and using the power of the “quantum supercomputer” to make a positive difference in fundamental and industrial chemistry and related domains.

In close collaboration with our customers, we are driving towards systems capable of supporting quantum advantage and unlocking tangible and significant business value.

To access InQuanto today, including ҹɫֱ Systems and third-party hardware and emulators, visit: /products-solutions/inquanto

To get started with ҹɫֱ Nexus, which meets all your quantum computing needs across ҹɫֱ Systems and third-party backends, visit: /products-solutions/nexus

To find out more and access ҹɫֱ Systems, visit: /products-solutions/quantinuum-systems

About ҹɫֱ

ҹɫֱ,the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. ҹɫֱ’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, ҹɫֱ leads the quantum computing revolution across continents.

Blog
May 1, 2025
GenQAI: A New Era at the Quantum-AI Frontier

At the heart of quantum computing’s promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).

GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.

Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we’re not just feeding an AI more text from the internet; we’re giving it new and valuable data that can’t be obtained anywhere else.

The Search for Ground State Energy

One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule’s ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.

The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force—testing every possible state and measuring its energy—because the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.

That’s where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.

Here's how it works:

  • We start with a batch of trial quantum circuits, which are run on our QPU.
  • Each circuit prepares a quantum state, and we measure the energy of that state with respect to the Hamiltonian for each one.
  • Those measurements are then fed back into a transformer model (the same architecture behind models like GPT-2) to improve its outputs.
  • The transformer generates a new distribution of circuits, biased toward ones that are more likely to find lower energy states.
  • We sample a new batch from the distribution, run them on the QPU, and repeat.
  • The system learns over time, narrowing in on the true ground state.

To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H₂). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.

To our knowledge, we’re the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.

The Future of Quantum Chemistry

The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems—from to materials discovery, and potentially, even drug design.

By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.

This is just the beginning. We’re already looking at applying GQE to more complex molecules—ones that can’t currently be solved with existing methods, and we’re exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.

technical
All
Blog
April 11, 2025
ҹɫֱ’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and ҹɫֱ Systems.

Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and ҹɫֱ joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here.

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

ҹɫֱ delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All