In a series of recent technical papers, 夜色直播 researchers demonstrated the world-leading capabilities of the latest H-Series quantum computers, and the features and tools that make these accessible to our global customers and users.
Our teams used the H-Series quantum computers to [1] for the first time, [2], [3], [4], as well as exhaustively [5].
Part of what makes such rapid technical and scientific progress possible is the effort our teams continually make to develop and improve workflow tools, helping our users to achieve successful results. In this blog post, we will explore the capabilities of three new tools in some detail, discuss their significance, and highlight their impact in recent quantum computing research.
鈥淟eakage鈥 is a quantum error process where a qubit ends up in a state outside the computational subspace and can significantly impact quantum computations. To address this issue, 夜色直播 has developed a leakage detection gadget in pyTKET, a python module for interfacing with TKET, our quantum computing toolkit and optimizing compiler. This gadget, presented at the [6], acts as an error detection technique: it detects and excludes results affected by leakage, minimizing its impact on computations. It is also a valuable tool for measuring single-qubit and two-qubit spontaneous emission rates. H-Series users can access this open-source gadget through pyTKET, and an is available on the pyTKET GitHub repository.聽
The MCMR package, built as a pyTKET compiler pass, is designed to reduce the number of qubits required for executing many types of quantum algorithms, expanding the scope of what is possible on the current-generation H-Series quantum computers.聽
As an example, in a [4], 夜色直播 researchers applied this tool to simulate the transverse-field Ising model and used only 20 qubits to simulate a much larger 128 site system (there is more detail below on this work). By measuring qubits early in the circuit, resetting them, and reusing them elsewhere, the package ingests a raw circuit and outputs an optimized circuit that requires fewer quantum resources. Previously, a [7] and on MCMR were published highlighting its benefits and applications. H-Series customers can download this package via the 夜色直播 user portal.
To enable efficient use of 夜色直播鈥檚 2nd generation processor, the System Model H2, 夜色直播 has released the H2-1 emulator to give users greater flexibility with noise-informed state vector emulation. This emulator uses the NVIDIA's cuQuantum SDK to accelerate quantum computing simulation workflows, nearly approaching the limit of full state emulation on conventional classical hardware. The emulator is a faithful representation of the QPU it emulates. This is accomplished by not only using realistic noise models and noise parameters, but also by sharing the same software stack between the QPU and the emulator up until the job is either routed to the QPU or the classical computing processors. Most notable is that the emulator and the QPU use the same compiler allowing subtle and time-dependent errors to be appropriately represented. The H2-1 emulator was initially released as a beta product alongside the System Model H2 quantum computer at launch. It runs on a GPU backend and an upgraded global framework now offering features such as job chunking, incremental resource distribution, mid-execution job cancellation, and partial result return. Detailed information about the emulator can be found in the H2 emulator product datasheet on the 夜色直播 website. H-Series customers with an H2 subscription can access the H2-1 emulator via an API or the Microsoft Azure platform.
夜色直播's new enabling tools have already demonstrated their efficacy and value in recent quantum computing research, playing a vital role in advancing the field and achieving groundbreaking results. Let's expand on some notable recent examples.
All works presented here benefited from having access to our H-Series emulators; of these two significant demonstrations were the 鈥溾 [1] and 鈥溾 [2]. These demonstrations involved extensive testing, debugging, and experiment design, for which the versatility of the H2-1 emulator proved invaluable, providing initial performance benchmarks in a realistic noisy environment. Researchers relied on the emulator's results to gauge algorithmic performance and make necessary adjustments. By leveraging the emulator's capabilities, researchers were able to accelerate their progress.
The MCMR package was extensively used in quantum computer鈥檚 world-leading capabilities [5]. Two application-level benchmarks performed in this work, approximating the solution to a MaxCut combinatorics problem using the quantum approximate optimization algorithm (QAOA) and accurately simulating a quantum dynamics model using a holographic quantum dynamics (HoloQUADS) algorithm, would have been too large to encode on H2's 32 qubits without the MCMR package. Further illustrating the overall value of these tools, in the HoloQUADS benchmark, there is a "bond qubit" that is particularly susceptible to errors due to leakage. The leakage detection gadget was used on this "bond qubit" at the end of the circuit, and any shots with a detected leakage error were discarded. The leakage detection gadget was also used to obtain the rate of leakage error per single-qubit and two-qubit gates, two component-level benchmarks.
In another scientific work [4], the MCMR compilation tool proved instrumental to simulating a transverse-field Ising model on 128 sites, using 20 qubits. With the MCMR package and by leveraging a state-of-the-art classical tensor-network ansatz expressed as a quantum circuit, the 夜色直播 team was able to express the highly entangled ground state of the critical Ising model. The team showed that with H1-1's 20 qubits, the properties of this state could be measured on a 128-site system with very high fidelity, enabling a quantitatively accurate extraction of some critical properties of the model.
At 夜色直播, we are entirely devoted to producing a quantum hardware, middleware and software stack that leads the world on the most important benchmarks and includes features and tools that provide breakthrough benefit to our growing base of users.聽 In today's NISQ hardware, "benefit" usually takes the form of getting the most performance out of today鈥檚 hardware, continually pushing what is considered to be possible. In this blog we describe two examples: error detection and discard using the 鈥渓eakage detection gadget鈥 and an automated method for circuit optimization for qubit reuse. 鈥淏enefit鈥 can also take other forms, such as productivity. Our emulator brings many benefits to our users, but one that resonates the most is productivity. Being a faithful representation of our QPU performance, the emulator is an accessible tool which users have at their disposal to develop and test new, innovative algorithms. The tools and features 夜色直播 releases are driven by users鈥 feedback; whether you are new to H-Series or a seasoned user, please reach-out and let us know how we can help bring benefit to your research and use case.
鈥
Footnotes:
[1] Mohsin Iqbal et al., Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor (2023),
[2] Sebastian Leontica and David Amaro, Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits (2022),
[3] Kentaro Yamamoto, Samuel Duffield, Yuta Kikuchi, and David Mu帽oz Ramo, Demonstrating Bayesian Quantum Phase Estimation with Quantum Error Detection (2023),
[4] Reza Haghshenas, et al., Probing critical states of matter on a digital quantum computer (2023),
[5] S. A. Moses, et al., A Race Track Trapped-Ion Quantum Processor (2023),
[6] K. Mayer, Mitigating qubit leakage errors in quantum circuits with gadgets and post-selection, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, (2022), pp. 809-809, doi: .
[7] Matthew DeCross, Eli Chertkov, Megan Kohagen, and Michael Foss-Feig, Qubit-reuse compilation with mid-circuit measurement and reset (2022),
夜色直播,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 夜色直播鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 夜色直播 leads the quantum computing revolution across continents.聽
Twenty-five years ago, scientists accomplished a task likened to a biological : the sequencing of the entire human genome.
The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.
Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome 鈥 including the availability of a 鈥渞eference genome鈥 鈥 have aided progress, alongside enormous advances in algorithms and computing power.
But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.
The is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.
One consortium 鈥 led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University 鈥 is taking a leading role.
鈥淭he overall goal of the team鈥檚 project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences 鈥 a task that can go beyond the capabilities of current classical computers鈥 鈥 Wellcome Sanger Institute , July 2025
Earlier this year, the Sanger Institute selected 夜色直播 as a technology partner in their bid to succeed in the Q4Bio challenge.
Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).
In this collaboration, the scientific research team can take advantage of 夜色直播鈥檚 full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.
鈥淲e were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world鈥檚 highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.鈥 鈥 Rajeeb Hazra, President and CEO of 夜色直播
At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing鈥檚 readiness for tackling real-world use cases.
Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.
Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and 夜色直播鈥檚 partnership reminds us that we may soon reach an important step forward in human health research 鈥 one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.
鈥淨uantum computational biology has long inspired us at 夜色直播, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.鈥 鈥 Ilyas Khan, Founder and Chief Product Officer of 夜色直播
Every year, The IEEE International Conference on Quantum Computing and Engineering 鈥 or 鈥 brings together engineers, scientists, researchers, students, and others to learn about advancements in quantum computing.
This year鈥檚 conference from August 31st 鈥 September 5th, is being held in Albuquerque, New Mexico, a burgeoning epicenter for quantum technology innovation and the home to our new location that will support ongoing collaborative efforts to advance the photonics technologies critical to furthering our product development.
Throughout IEEE Quantum Week, our quantum experts will be on-site to share insights on upgrades to our hardware, enhancements to our software stack, our path to error correction, and more.
Meet our team at Booth #507 and join the below sessions to discover how 夜色直播 is forging the path to fault-tolerant quantum computing with our integrated full-stack.
Quantum Software 2.1: Open Problems, New Ideas, and Paths to Scale
1:15 鈥 2:10pm MDT | Mesilla
We recently shared the details of our new software stack for our next-generation systems, including Helios (launching in 2025). 夜色直播鈥檚 Agust铆n Borgna will deliver a lighting talk to introduce Guppy, our new, open-source programming language based on Python, one of the most popular general-use programming languages for classical computing.
PAN08: Progress and Platforms in the Era of Reliable Quantum Computing
1:00 鈥 2:30pm MDT | Apache
We are entering the era of reliable quantum computing. Across the industry, quantum hardware and software innovators are enabling this transformation by creating reliable logical qubits and building integrated technology stacks that span the application layer, middleware and hardware. Attendees will hear about current and near-term developments from Microsoft, 夜色直播 and Atom Computing. They will also gain insights into challenges and potential solutions from across the ecosystem, learn about Microsoft鈥檚 qubit-virtualization system, and get a peek into future developments from 夜色直播 and Microsoft.
BOF03: Exploring Distributed Quantum Simulators on Exa-scale HPC Systems
3:00 鈥 4:30pm MDT | Apache
The core agenda of the session is dedicated to addressing key technical and collaborative challenges in this rapidly evolving field. Discussions will concentrate on innovative algorithm design tailored for HPC environments, the development of sophisticated hybrid frameworks that seamlessly combine classical and quantum computational resources, and the crucial task of establishing robust performance benchmarks on large-scale CPU/GPU HPC infrastructures.
PAN11: Real-time Quantum Error Correction: Achievements and Challenges
1:00 鈥 2:30pm MDT | La Cienega
This panel will explore the current state of real-time quantum error correction, identifying key challenges and opportunities as we move toward large-scale, fault-tolerant systems. Real-time decoding is a multi-layered challenge involving algorithms, software, compilation, and computational hardware that must work in tandem to meet the speed, accuracy, and scalability demands of FTQC. We will examine how these challenges manifest for multi-logical qubit operations, and discuss steps needed to extend the decoding infrastructure from intermediate-scale systems to full-scale quantum processors.
Keynote by NVIDIA
8:00 鈥 9:30am MDT | Kiva Auditorium
During his keynote talk, NVIDIA鈥檚 Head of Quantum Computing Product, Sam Stanwyck, will detail our partnership to fast-track commercially scalable quantum supercomputers. Discover how 夜色直播 and NVIDIA are pushing the boundaries to deliver on the power of hybrid quantum and classical compute 鈥 from integrating NVIDIA鈥檚 CUDA-Q Platform with access to 夜色直播鈥檚 industry-leading hardware to the recently announced NVIDIA Quantum Research Center (NVAQC).
Visible Photonic Component Development for Trapped-Ion Quantum Computing
September 2nd from 6:30 - 8:00pm MDT | September 3rd from 9:30 - 10:00am MDT |聽September 4th from 11:30 - 12:30pm MDT
鈥Authors: Elliot Lehman, Molly Krogstad, Molly P. Andersen, Sara Cambell, Kirk Cook, Bryan DeBono, Christopher Ertsgaard, Azure Hansen, Duc Nguyen, Adam聽Ollanik, Daniel Ouellette, Michael Plascak, Justin T. Schultz, Johanna Zultak, Nicholas Boynton, Christopher DeRose,Michael Gehl, and Nicholas Karl
Scaling Up Trapped-Ion Quantum Processors with Integrated Photonics
September 2nd from 6:30 - 8:00pm MDT and 2:30 - 3:00pm MDT |聽September 4th from 9:30 - 10:00am MDT
Authors: Molly Andersen, Bryan DeBono, Sara Campbell, Kirk Cook, David Gaudiosi, Christopher Ertsgaard, Azure Hansen, Todd Klein, Molly Krogstad, Elliot Lehman, Gregory MacCabe, Duc Nguyen, Nhung Nguyen, Adam Ollanik, Daniel Ouellette, Brendan Paver, Michael Plascak, Justin Schultz and Johanna Zultak
In a partnership that is part of a long-standing relationship with Los Alamos National Laboratory, we have been working on new methods to make quantum computing operations more efficient, and ultimately, scalable.
Learn more in our Research Paper:
Our teams collaborated with Sandia National Laboratories demonstrating our leadership in benchmarking. In this paper, we implemented a technique devised by researchers at Sandia to measure errors in mid-circuit measurement and reset. Understanding these errors helps us to reduce them while helping our customers understand what to expect while using our hardware.
Learn more in our Research Paper:
From machine learning to quantum physics, tensor networks have been quietly powering the breakthroughs that will reshape our society. Originally developed by the legendary Nobel laureate Roger Penrose, they were first used to tackle esoteric problems in physics that were previously unsolvable.
Today, tensor networks have become indispensable in a huge number of fields, including both classical and quantum computing, where they are used everywhere from quantum error correction (QEC) decoding to quantum machine learning.
In , we teamed up with luminaries from the University of British Columbia, California Institute of Technology, University of Jyv盲skyl盲, KBR Inc, NASA, Google Quantum AI, NVIDIA, JPMorgan Chase, the University of Sherbrooke, and Terra Quantum AG to provide a comprehensive overview of the use of tensor networks in quantum computing.
Part of what drives our leadership in quantum computing is our commitment to building the best scientific team in the world. This is precisely why we hired Dr. Reza Haghshenas, one of the world鈥檚 leading experts in tensor networks, and a co-author on the paper.
Dr. Haghshenas has been researching tensor networks for over a decade across both academia and industry. Dr. Haghshenas did postdoctoral work under , a leading figure in the use of tensor networks for quantum physics and chemistry.
鈥淲orking with Dr. Garnet Chan at Caltech was a formative experience for me鈥, remarked Dr. Haghshenas. 鈥淲hile there, I contributed to the development of quantum simulation algorithms and advanced classical methods like tensor networks to help interpret and simulate many-body physics.鈥
Since joining 夜色直播, Dr. Haghshenas has led projects that bring tensor network methods into direct collaboration with experimental hardware teams 鈥 exploring quantum magnetism on real quantum devices and helping demonstrate early signs of quantum advantage. He also contributes to , helping the broader research community access these methods.
Dr. Haghshenas鈥 work sits in a broad and vibrant ecosystem exploring novel uses of tensor networks. Collaborations with researchers like Dr. Chan at Caltech, and NVIDIA have brought GPU-accelerated tools to bear on the forefront of applying tensor networks to quantum chemistry, quantum physics, and quantum computing.
Of particular interest to those of us in quantum computing, the best methods (that we know of) for simulating quantum computers with classical computers rely on tensor networks. Tensor networks provide a nice way of representing the entanglement in a quantum algorithm and how it spreads, which is crucial but generally quite difficult for classical algorithms. In fact, it鈥檚 partly tensor networks鈥 ability to represent entanglement that makes them so powerful for quantum simulation. Importantly, it is our in-house expertise with tensor networks that makes us confident we are indeed moving past classical capabilities.
Tensor networks are not only crucial to cutting-edge simulation techniques. 聽At 夜色直播, we're working on understanding and implementing quantum versions of classical tensor network algorithms, from quantum matrix product states to holographic simulation methods. In doing this, we are leveraging decades of classical algorithm development to advance quantum computing.
A topic of growing interest is the role of tensor networks in QEC, particularly in a process known as decoding. QEC works by encoding information into an entangled state of multiple qubits and using syndrome measurements to detect errors. These measurements must then be decoded to identify the specific error and determine the appropriate correction. This decoding step is challenging鈥攊t must be both fast (within the qubit鈥檚 coherence time) and accurate (correctly identifying and fixing errors). Tensor networks are emerging as one of the most for tackling this task.
Tensor networks are more than just a powerful computational tool 鈥 they are a bridge between classical and quantum thinking. As this new paper shows, the community鈥檚 understanding of tensor networks has matured into a robust foundation for advancing quantum computing, touching everything from simulation and machine learning to error correction and circuit design.
At 夜色直播, we see this as an evolutionary step, not just in theory, but in practice. By collaborating with top minds across academia and industry, we're charting a path forward that builds on decades of classical progress while embracing the full potential of quantum mechanics. This transition is not only conceptual but algorithmic, advancing how we formulate and implement methods utilizing efficiently both classical and quantum computing. Tensor networks aren鈥檛 just helping us keep pace with classical computing; they鈥檙e helping us to transcend it.